Skip to main content
Log in

Room-Temperature Curing and Grain Growth at High Humidity in Conductive Adhesives with Ultra-Low Silver Content

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Isotropic conductive adhesives (ICAs) are alternatives to metallic solders as interconnects in solar modules and electronic devices, but normally require silver contents >25 vol.% and elevated curing temperatures to achieve reasonable conductivity. In this work, ICAs are prepared with a silver content of 1.0 vol.% by using polymer spheres coated with nanograined silver thin films as filler particles. In contrast to conventional ICAs, there are no organic lubricants on the silver surfaces to obstruct the formation of metallic contacts, and conductivity is achieved even when the adhesive is cured at room temperature. When exposed to long-term storage at 85°C and 85% relative humidity, the silver films undergo significant grain growth, evidenced by field-emission scanning electron microscopy observation of ion-milled cross-sections and x-ray diffraction. This has a positive effect on the electrical conductivity of the ICA through the widening of metallic contacts and decreased scattering of electrons at grain boundaries, and is explained by an electrochemical Ostwald ripening process. The effects of decoupling heat and humidity is investigated by storage at either 85°C or immersion in water. It is shown that the level of grain growth during the various post-curing treatments is dependent on the initial curing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, K.-S. Moon, and C. Wong, Science 308, 1419 (2005).

    Article  Google Scholar 

  2. M.T. Zarmai, N.N. Ekere, C.F. Oduoza, and E.H. Amalu, Appl. Energy 154, 173 (2015).

    Article  Google Scholar 

  3. A. Schneider, R. Harney, S. Aulehla, E. Lemp, and S. Koch, Energy Procedia 38, 387 (2013).

    Article  Google Scholar 

  4. G. Beaucarne, I. Kuzma-Filipek, F. Campeol, X. Young, J. Wei, Y. Yu, R. Russell, and F. Duerinckx, Energy Procedia 67, 185 (2015).

    Article  Google Scholar 

  5. D.W.K. Eikelboom, J.H. Bultman, A. Schonecker, M.H.H. Meuwissen, M.A.J.C.v.d. Nieuwenhof, and D.L. Meier, in 29th IEEE Photovoltaic Specialists Conference (2002). doi:10.1109/PVSC.2002.1190544.

  6. H.H. Hsieh, W.K. Lee, T.C. Chang, and C.S. Hsi, in 5th International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT) (2010). doi:10.1109/IMPACT.2010.5699598.

  7. Y. Li and C.P. Wong, Mater. Sci. Eng. R 51, 1 (2006).

    Article  Google Scholar 

  8. J.E. Morris and J. Liu, Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, ed. E. Suhir, Y.C. Lee, and C.P. Wong (New York: Springer, 2007), p. 527.

    Chapter  Google Scholar 

  9. S.R. Pettersen, H. Kristiansen, S. Nagao, S. Helland, J. Njagi, K. Suganuma, Z. Zhang, and J. He, J. Electron. Mater. 45, 3734 (2016).

    Article  Google Scholar 

  10. M. Wang and N. Pan, Mater. Sci. Eng. R Rep. 63, 1 (2008).

    Article  Google Scholar 

  11. D. Lu and C.P. Wong, Int. J. Adhes. Adhes. 20, 189 (2000).

    Article  Google Scholar 

  12. M. Inoue, H. Muta, T. Maekawa, S. Yamanaka, and K. Suganuma, J. Electron. Mater. 38, 430 (2009).

    Article  Google Scholar 

  13. B. Meschi Amoli, A. Hu, N.Y. Zhou, and B. Zhao, J. Mater. Sci. Mater. Electron. 26, 4730 (2015).

    Article  Google Scholar 

  14. D. Lu, Q.K. Tong, and C.P. Wong, in International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (1999). doi:10.1109/ISAPM. 1999.757278.

  15. H.-W. Cui, J.-T. Jiu, S. Nagao, T. Sugahara, K. Suganuma, H. Uchida, and K.A. Schroder, RSC Adv. 4, 15914 (2014).

    Article  Google Scholar 

  16. V. Zardetto, T.M. Brown, A. Reale, and A. Di Carlo, J. Polym. Sci. Part B Polym. Phys. 49, 638 (2011).

    Article  Google Scholar 

  17. A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, and G.M. Whitesides, Adv. Funct. Mater. 20, 28 (2010).

    Article  Google Scholar 

  18. R. Zhang, K.-S. Moon, W. Lin, J.C. Agar, and C.-P. Wong, Compos. Sci. Technol. 71, 528 (2011).

    Article  Google Scholar 

  19. Y. Zemen, T. Prewitz, T. Geipel, S. Pingel, and J. Berghold, in 5th World Conference on Photovoltaic Energy Conversion (Valencia, Spain, 2010), p. 4073.

  20. H.-W. Cui, J.-T. Jiu, T. Sugahara, S. Nagao, K. Suganuma, and H. Uchida, Electron. Mater. Lett. 11, 315 (2015).

    Article  Google Scholar 

  21. R. Zhang, W. Lin, K.-S. Moon, Q. Liang, and C.P. Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 25 (2011).

    Article  Google Scholar 

  22. R. Zhang, W. Lin, K. Lawrence, and C.P. Wong, Int. J. Adhes. Adhes. 30, 403 (2010).

    Article  Google Scholar 

  23. J. Liu, O. Salmela, J. Särkkä, J.E. Morris, P.-E. Tegehall, and C. Andersson, Reliability of Microtechnology: Interconnects, Devices and Systems, ed. J. Liu, O. Salmela, J. Särkkä, J.E. Morris, P.-E. Tegehall, and C. Andersson (New York: Springer, 2011), p. 71.

    Chapter  Google Scholar 

  24. J. Gakkestad, L. Zhuo, T. Helland, and C.P. Wong, in IEEE 15th Electronics Packaging Technology Conference (EPTC) (2013). doi:10.1109/EPTC.2013.6745715.

  25. S. Jain, Isotropically conductive adhesive filled with silver metalised polymer spheres, PhD Thesis, Loughborough University, Loughborough, UK (2016).

  26. S.R. Pettersen, H. Kristiansen, K. Redford, S. Helland, E. Kalland, Z. Zhang, and J. He, in IEEE 66th Electronic Components and Technology Conference (ECTC) (2016). doi:10.1109/ECTC.2016.53.

  27. R. Holm, Electric Contacts: Theory and Application, 4th ed. (Berlin: Springer, 1967), pp. 118–134.

    Book  Google Scholar 

  28. P.L. Redmond, A.J. Hallock, and L.E. Brus, Nano Lett. 5, 131 (2005).

    Article  Google Scholar 

  29. S.R. Pettersen, A.E. Stokkeland, H. Kristiansen, J. Njagi, K. Redford, D.V. Goia, Z. Zhang, and J. He, Appl. Phys. Lett. 109, 043103 (2016).

    Article  Google Scholar 

  30. K. Fuchs, Math. Proc. Camb. Philos. Soc. 34, 100 (1938).

    Article  Google Scholar 

  31. E.H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  Google Scholar 

  32. A.F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).

    Article  Google Scholar 

  33. W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146 (2004).

    Article  Google Scholar 

  34. C. Song, P. Wang, and H.A. Makse, Nature 453, 629 (2008).

    Article  Google Scholar 

  35. P. Scherrer, Nachr. Ges. Wiss. Goettingen Math.-Phys. Kl. 2, 98 (1918).

  36. U. Holzwarth and N. Gibson, Nat. Nanotechnol. 6, 534 (2011).

    Article  Google Scholar 

  37. A.R. Tao, S. Habas, and P. Yang, Small 4, 310 (2008).

    Article  Google Scholar 

  38. Y. Sun and Y. Xia, Science 298, 2176 (2002).

    Article  Google Scholar 

  39. M. Inoue and K. Suganuma, J. Electron. Mater. 36, 669 (2007).

    Article  Google Scholar 

  40. M. Inoue and K. Suganuma, Solder. Surf. Mt. Technol. 18, 40 (2006).

    Article  Google Scholar 

  41. D. Klosterman, L. Li, and J.E. Morris, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21, 23 (1998).

    Article  Google Scholar 

  42. Y. Li, D. Lu, and C.P. Wong, Electrical Conductive Adhesives with Nanotechnologies, ed. Y. Li, D. Lu, and C.P. Wong (New York: Springer, 2010), p. 121.

    Chapter  Google Scholar 

  43. C. Yang, C.P. Wong, and M.M. Yuen, J. Mater. Chem. C 1, 4052 (2013).

    Article  Google Scholar 

  44. U. Kreibig and C.v. Fragstein, Z. Phys. 224, 307 (1969).

    Article  Google Scholar 

  45. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, and Y.N. Zhou, ACS Appl. Mater. Interfaces 7, 12597 (2015).

    Article  Google Scholar 

  46. D. Wakuda, M. Hatamura, and K. Suganuma, Chem. Phys. Lett. 441, 305 (2007).

    Article  Google Scholar 

  47. D. Wakuda, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Technol. 32, 627 (2009).

    Article  Google Scholar 

  48. D. Wakuda, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Technol. 33, 437 (2010).

    Article  Google Scholar 

  49. J.P. Pascault and R.J.J. Williams, J. Polym. Sci. Part B Polym. Phys. 28, 85 (1990).

    Article  Google Scholar 

  50. A. Hale, C.W. Macosko, and H.E. Bair, Macromolecules 24, 2610 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettersen, S.R., Redford, K., Njagi, J. et al. Room-Temperature Curing and Grain Growth at High Humidity in Conductive Adhesives with Ultra-Low Silver Content. J. Electron. Mater. 46, 4256–4266 (2017). https://doi.org/10.1007/s11664-017-5376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5376-1

Keywords

Navigation