Skip to main content
Log in

Elemental Diffusion and Service Performance of Bi2Te3-Based Thermoelectric Generation Modules with Flexible Connection Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the elemental diffusion and service performance of Bi2Te3-based thermoelectric generation (TEG) modules with flexible Al electrodes were evaluated at a temperature difference of 240°C and a cold junction temperature of 50°C. The results indicated that while the maximum output power (P max) and open circuit voltage (U 0) first increased rapidly and then decreased gradually with service time, the dynamic inner-resistance (R i) showed the opposite trend. Obvious defects and elemental diffusion across the interfaces were observed and resulted in the performance degradation of the TEG modules. The Ni barrier layer with a thickness of 8–10 μm could not effectively restrain the elemental diffusion for the TEG applications at the high operating temperatures. Al was not suitable as the electrode material for the Bi2Te3-based TEG modules due to its ready absorption of Se from the n-type thermoelectric legs. Encouragingly, we found that the Al electrode could restrain the diffusion of the other elements such as Bi, Te, Sb, Cu, Ni, and I. These results provided insight into the improvement of the service performance of the TEG modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014).

    Article  Google Scholar 

  2. F.X. Villasevil and A.M. López, J. Power Sources 252, 264 (2014).

    Article  Google Scholar 

  3. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  4. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  5. L. Francioso, C.D. Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, and A. Perrone, J. Power Sources 196, 3239 (2011).

    Article  Google Scholar 

  6. M.Y. Kim and T.S. Oh, J. Electron. Mater. 42, 2752 (2013).

    Article  Google Scholar 

  7. W.S. Liu, Q. Jie, H.S. Kim, and Z.F. Ren, Acta Mater. 87, 357 (2015).

    Article  Google Scholar 

  8. R.O. Carlson, J. Phys. Chem. Solids 13, 65 (1960).

    Article  Google Scholar 

  9. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, and K.E. Goodson, J. Electron. Mater. 42, 372 (2013).

    Article  Google Scholar 

  10. R.M. Redstall and R. Studd, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 641.

    Google Scholar 

  11. N.H. Bae, S. Han, K.E. Lee, B. Kim, and S.T. Kim, Curr. Appl. Phys. 11, S40 (2011).

    Article  Google Scholar 

  12. W.S. Liu, H.Z. Wang, L.J. Wang, X.W. Wang, G. Joshi, G. Chen, and Z.F. Ren, J. Mater. Chem. A 1, 13093 (2013).

    Article  Google Scholar 

  13. R.M. Watt, Compos. Struct. 34, 117 (1996).

    Article  Google Scholar 

  14. T. Kacsich, E. Kolawa, J.P. Fleurial, T. Caillat, and M.A. Nicolet, J. Phys. D Appl. Phys. 31, 2406 (1998).

    Article  Google Scholar 

  15. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910 (2008).

    Article  Google Scholar 

  16. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci. Mater. Electron. 22, 1313 (2011).

    Article  Google Scholar 

  17. S.W. Chen, T.R. Yang, C.Y. Wu, H.W. Hsiao, H.S. Chu, J.D. Huang, and T.W. Liou, J. Alloys Compd. 686, 847 (2016).

    Article  Google Scholar 

  18. T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. 41, 153 (2011).

    Article  Google Scholar 

  19. S.W. Chen, H.J. Wu, C.Y. Wu, C.F. Chang, and C.Y. Chen, J. Alloys Compd. 553, 106 (2013).

    Article  Google Scholar 

  20. X.Z. Cai, X.A. Fan, Z.Z. Rong, F. Yang, Z.H. Gan, and G.Q. Li, J. Phys. D Appl. Phys. 47, 115101 (2014).

    Article  Google Scholar 

  21. C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid State Lett. 10, 23 (2007).

    Article  Google Scholar 

  22. G.J. Lv, L.L. Cui, Y.Y. Wu, Y. Liu, T. Pu, and X.Q. He, Phys. Chem. Chem. Phys. 15, 13093 (2013).

    Article  Google Scholar 

  23. L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, and J.F. Li, J. Alloys Compd. 467, 91 (2009).

    Article  Google Scholar 

  24. I.V. Gasenkova and T.E. Svechnikova, Inorg. Mater. 40, 570 (2004).

    Article  Google Scholar 

  25. T.E. Svechnikova, I.Y. Nikhezina, and N.V. Polikarpova, Inorg. Mater. 36, 765 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi’an Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Fan, X., Rong, Z. et al. Elemental Diffusion and Service Performance of Bi2Te3-Based Thermoelectric Generation Modules with Flexible Connection Electrodes. J. Electron. Mater. 46, 1363–1370 (2017). https://doi.org/10.1007/s11664-016-5135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5135-8

Keywords

Navigation