Skip to main content
Log in

Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Synchrotron x-ray microdiffraction (\(\upmu \hbox {XRD}\)) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, \(\upmu \hbox {XRD}\) is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the \(\upmu \hbox {XRD}\) technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of \(\upmu \hbox {XRD}\) in microelectronics will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. The approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhou, W. Zhu, H. Shen, Y. Li, A. Zhang, N. Tamura, and K. Chen, Sci. Rep. 6, 28144 (2016).

    Article  Google Scholar 

  2. X. Chen, N. Tamura, A. MacDowell, and R.D. James, Appl. Phys. Lett. 108, 211902 (2016).

    Article  Google Scholar 

  3. A. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng. A 635, 6 (2015).

    Article  Google Scholar 

  4. A. Budiman, P. Besser, C. Hau-Riege, A. Marathe, Y.C. Joo, N. Tamura, J. Patel, and W. Nix, J. Electron. Mater. 38, 379 (2009).

    Article  Google Scholar 

  5. A. Budiman, C. Hau-Riege, W. Baek, C. Lor, A. Huang, H. Kim, G. Neubauer, J. Pak, P. Besser, and W. Nix, J. Electron. Mater. 39, 2483 (2010).

    Article  Google Scholar 

  6. K. Chen, N. Tamura, B. Valek, and K. Tu, J. Appl. Phys. 104, 013513 (2008).

    Article  Google Scholar 

  7. Y. Liu, N. Tamura, D.W. Kim, S. Gu, and K. Tu, Scr. Mater. 102, 39 (2015).

    Article  Google Scholar 

  8. A. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Reliab. 52, 530 (2012).

    Article  Google Scholar 

  9. A. Budiman, G. Illya, V. Handara, W. Caldwell, C. Bonelli, M. Kunz, N. Tamura, and D. Verstraeten, Sol. Energy Mater. Sol. Cells 130, 303 (2014).

    Article  Google Scholar 

  10. K.N. Rengarajan, I. Radchenko, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 76 (2016).

    Article  Google Scholar 

  11. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).

    Article  Google Scholar 

  12. R. Barabash and G. Ice (eds.), Strain and Dislocation Gradients from Diffraction. Spatially Resolved Local Structure and Defects (London: Imperial College Press, 2014), p. 125.

    Google Scholar 

  13. N. Tamura, M. Kunz, K. Chen, R. Celestre, A. MacDowell, and T. Warwick, Mater. Sci. Eng. A 524, 28 (2009).

    Article  Google Scholar 

  14. K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat, Proc. IEEE 89, 602 (2001).

    Article  Google Scholar 

  15. J.U. Knickerbocker, P.S. Andry, L.P. Buchwalter, A. Deutsch, R.R. Horton, K.A. Jenkins, Y.H. Kwark, G. McVicker, C.S. Patel, R.J. Polastre, R.J. Schuster, A. Sharma, S.M. Sri-Jayantha, C.W. Surovic, C.K. Tsang, B.C. Webb, S.L. Wright, S.R. McKnight, E.J. Sprogis, and B. Dang, IBM J. Res. Dev. 49, 725 (2005).

    Article  Google Scholar 

  16. S.E. Thompson, G. Sun, Y.S. Choi, and T. Nishida, IEEE Trans. Electron. Dev. 53, 1010 (2006).

    Article  Google Scholar 

  17. C. Okoro, Y. Yang, B. Vandevelde, B. Swinnen, D. Vandepitte, B. Verlinden, and I. De Wolf, in International Interconnect Technology Conference, 2008 (IITC 2008) (2008), p. 16.

  18. X. Liu, Q. Chen, P. Dixit, R. Chatterjee, R.R. Tummala, and S.K. Sitaraman, in 59th Electronic Components and Technology Conference, 2009 (ECTC 2009) (2009), p. 624.

  19. M.H. Liao, M.Y. Yu, G.H. Liu, C.H. Chen, and T.K. Hsu, AIP Adv. 3, 082123 (2013).

    Article  Google Scholar 

  20. S.S. Sapatnekar, IEEE J. Emerg. Sel. Top. Circuits Syst. 1, 5 (2011).

  21. J.M. Paik, I.M. Park, and Y.C. Joo, Thin Solid Films 504, 284 (2006).

    Article  Google Scholar 

  22. T. Tian, R. Morusupalli, H. Shin, H.Y. Son, K.Y. Byun, Y.C. Joo, R. Caramto, L. Smith, Y. Shen, M. Kunz, N. Tamura, and A. Budiman, Procedia Eng. 139, 101 (2016).

    Article  Google Scholar 

  23. K.H. Lu, X. Zhang, S.K. Ryu, J. Im, R. Huang, and P.S. Ho, in 59th Electronic Components and Technology Conference, 2009 (ECTC 2009) (2009), p. 630.

  24. T. Lu, J. Yang, Z. Suo, A. Evans, R. Hecht, and R. Mehrabian, Acta Metall. Mater. 39, 1883 (1991).

    Article  Google Scholar 

  25. D.S. Steinberg, Preventing Thermal Cycling and Vibration Failures in Electronic Equipment (New York: Wiley, 2001).

    Google Scholar 

  26. A.M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, L. Felton, M. Davis, B. Atchley, and T. Williams, in 21st European Photovoltaic Solar Energy Conference (Dresden, 2006), p. 4.

  27. J. Wendt, M. Träger, M. Mette, A. Pfennig, and B. Jäckel, in Proceedings of the 24th EUPVSEC (2009), p. 3420.

  28. H. Pang, K. Tan, X. Shi, and Z. Wang, Mater. Sci. Eng. A 307, 42 (2001).

    Article  Google Scholar 

  29. J.H. Pang, T. Low, B. Xiong, X. Luhua, and C. Neo, Thin Solid Films 462, 370 (2004).

    Article  Google Scholar 

  30. Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, in Proceedings of the 55th Electronic Components and Technology Conference, 2005 (2005), p. 415.

  31. B.J. Kim, G.T. Lim, J. Kim, K. Lee, Y.B. Park, H.Y. Lee, and Y.C. Joo, J. Electron. Mater. 39, 2281 (2010).

    Article  Google Scholar 

  32. B.D. Culty, Elements of X-ray Diffraction (New York: Addision-Wesley, 1978), p. 149

  33. B.J. Kim, J.H. Kim, S.H. Hwang, A.S. Budiman, H.Y. Son, K.Y. Byun, N. Tamura, M. Kunz, D.I. Kim, and Y.C. Joo, J. Electron. Mater. 41, 712 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge collaborations with Nanyang Technological University (NTU), Singapore, the Massachusetts Institute of Technology (MIT), USA, the SEMATECH in the USA and SK Hynix, Inc. in Korea, along with SunPower Corporation in USA through experimental work, discussion and providing critical samples by which this comparison/survey study became possible. Critical support and infrastructure provided by Singapore University of Technology and Design (SUTD) for all authors during the manuscript preparation is much appreciated. ASB and SKT gratefully acknowledge the funding and support from National Research Foundation (NRF)/Economic Development Board (EDB) of Singapore for the project under EIRP Grant ‘(NRF2013EWT – EIRP002-017) – Enabling Thin Silicon Technologies for Next Generation, Lower Cost Solar PV Systems’. ASB and IR gratefully acknowledge the funding and support from SUTD-MIT International Design Center (IDC) for the project under Grant ’IDG31400102 – Designing Nanomaterials through Atomic Interface Engineering’. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory (LBNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Budiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, I., Tippabhotla, S.K., Tamura, N. et al. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices. J. Electron. Mater. 45, 6222–6232 (2016). https://doi.org/10.1007/s11664-016-5012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5012-5

Keywords

Navigation