Skip to main content
Log in

Dielectric Properties of Polyether Sulfone/Bismaleimide Resin Composite Based on Nanolumina Modified by Super-Critical Ethanol

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nano-alumina was chemically modified with super-critical ethanol enabling a surface active coating. Modified nano-alumina was incorporated in polymer blends based on thermoplastic polyether sulfone and thermosetting bismaleimide resin to produce novel nanocomposites designated as SCE-Al2O3/PES-MBAE. In the SCE-Al2O3/PES-MBAE nano-composites, the matrix was originally formed from 4,4′-diamino diphenyl methane bismaleimide (MBMI) using the diluents of 3,3′-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE), while polyether sulfone (PES) was used as toughening agent along with super-critically modified nano-alumina (SCE-Al2O3) as filler material. The content of SCE-Al2O3 was varied from 0 wt.% to 6 wt.%. The nano-composites were characterized for their morphological, spectroscopic and dielectric properties. Fourier transform infrared spectroscopy (FT-IR) indicated that ethanol molecules had adhered to the surface of the nano-Al2O3 in super-critical state. A reaction between MBMI and allyl compound occurred and SCE-Al2O3 was doped into the polymer matrix. Volume resistivity of the composite initially increased and then decreased. The modification due to SCE-Al2O3 could overcome the undesirable impact of PES by using a bare minimum level of SCE-Al2O3. The dielectric constant (ε) and dielectric loss (tan δ) as in the case of volume resistivity were initially increased and then decreased with the content of SCE-Al2O3 in the composite. The dielectric constant, dielectric loss and dielectric strength of SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE nano-composite were 3.53 (100 Hz), 1.52 × 10−3 (100 Hz) and 15.66 kV/mm, respectively, which indicated that the dielectric properties of the composite fulfilled the basic requirements of electrical and insulating material. It was evident from the morphological analysis that the SCE-Al2O3 was evenly dispersed at the nanoscale; for example, the size of SCE-Al2O3 in SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE measured less than 50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Wu, Y.H. Cheng, Q. Xie, C. Liu, K.C. Kou, L.H. Zhuo, and Y.Q. Wang, J. Polym. Res. 21, 12 (2014).

    Google Scholar 

  2. T. Takeichi, S. Uchida, Y. Inoue, T. Kawauchi, and N. Furukawa, High Perform. Polym. 26, 3 (2014).

    Article  Google Scholar 

  3. X.X. Chen, J.H. Ye, L. Yuan, G.Z. Liang, and A.J. Gu, J. Mater. Chem. A 2, 20 (2014).

    Google Scholar 

  4. K. Kanimozhi, P. Prabunathan, V. Selvaraj, and M. Alagar, Polym. Bull. 71, 6 (2014).

    Article  Google Scholar 

  5. X.L. Zeng, S.H. Yu, M.B. Lai, R. Sun, and C.P. Wong, Sci. Technol. Adv. Mater. 14, 6 (2013).

    Article  Google Scholar 

  6. H.X. Yan, P.B. Li, R.C. Ning, X.Y. Ma, and Z.P. Zhang, J. Appl. Polym. Sci. 110, 3 (2008).

    Google Scholar 

  7. S. Vinayagamoorthi, C.T. Vijayakumar, S. Alam, and S. Nanjundan, Eur. Polym. J. 45, 4 (2009).

    Article  Google Scholar 

  8. R.K. Helling and J.W. Tester, Environ. Sci. Technol. 22, 11 (1988).

    Article  Google Scholar 

  9. W. Yin, R.H. Venderbosch, G. Bottari, K.K. Krawzcyk, K. Barta, and H.J. Heeres, Appl. Catal. B-Environ. 166, 38 (2015)

  10. K.T. Tan, M.M. Gui, K.T. Lee, and A.R. Mohamed, J. Supercrit. Fluid 53, 1–3 (2010).

    Article  Google Scholar 

  11. R. Rajasekaran and M. Alagar, Bull. Mater. Sci. 31, 6 (2008).

    Article  Google Scholar 

  12. T.H. Chiang, C.Y. Liu, and C.Y. Dai, J. Polym. Res. 20, 10 (2013).

    Article  Google Scholar 

  13. D. Yang, C.H. Cao, and J. Wu, Mech. Compos. Mater. 49, 4 (2013).

    Google Scholar 

  14. H. Tang, N. Song, X. Chen, X. Fan, and Q. Zhou, J. Appl. Polym. Sci. 109, 1 (2008).

    Article  Google Scholar 

  15. L. Zeng, G.Z. Liang, A.J. Gu, L. Yuan, D.X. Zhuo, and J.T. Hu, J. Mater. Sci. 47, 6 (2012).

    Google Scholar 

  16. Y.F. Chen, Q.W. Dai, J.Y. Tan, and Q.Y. Zhang, Optoelectron. Adv. Mater. 8, 9–10 (2014).

    Google Scholar 

  17. J. Dang, R.M. Wang, L. Yang, L.H. Gao, Z. Zhang, and M. Zha, Polym. Bull. 71, 4 (2014).

    Article  Google Scholar 

  18. S.X. Zhu, A.J. Gu, and G.Z. Liang, J. Polym. Res. 18, 6 (2011).

    Google Scholar 

  19. J. Seo, W. Jang, and H. Han, Macromol. Res. 15, 1 (2007).

    Article  Google Scholar 

  20. L.B. Manfredi, H. De Santis, and A. Vázquez, Compos. A-Appl. Surf. Manuf. 39, 11 (2008).

    Google Scholar 

  21. Y.F. Chen, Q.W. Dai, X.W. Zhang, and T. Feng, J. Nanomater. (2014). doi:10.1155/2014/356273.

    Google Scholar 

  22. Y.F. Chen, Q.W. Dai, C.W. Lin, and T. Feng, J. Cent. South. Univ. 21, 11 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Z., Teng, C. et al. Dielectric Properties of Polyether Sulfone/Bismaleimide Resin Composite Based on Nanolumina Modified by Super-Critical Ethanol. J. Electron. Mater. 45, 6026–6032 (2016). https://doi.org/10.1007/s11664-016-4835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4835-4

Keywords

Navigation