Skip to main content

Advertisement

Log in

Towards Improved Thermoelectric Generator Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Over recent years, new thermoelectric materials have been developed with values for the dimensionless figure of merit, zT, substantially greater than unity. This has opened up the possibility of many new applications, particularly those involving the utilisation of waste heat. However, further improvements are necessary if thermoelectric generation is to have a significant impact on the world’s energy problems. It is well known that zT for a single energy band can be related to the Fermi energy and a parameter (μ/λ L) (m*/m)3/2, where μ is the carrier mobility, m*/m is the ratio of the carrier effective mass to the mass of a free electron and λ L is the lattice thermal conductivity. However, even when this parameter tends towards infinity, zT does not become much greater than 1 unless the Fermi level lies within the energy gap, far from the appropriate band edge. Thus, the magnitude of the energy gap is becoming of increasing importance. The two-fold requirements of a high value of (μ/λ L) (m*/m)3/2 and a sufficiently large energy gap are discussed. It is also shown that the likelihood of the required conditions being met at elevated temperatures can be predicted from low-temperature observations. It is, of course, much more difficult to make accurate determinations of the thermoelectric properties at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch, 1957).

    Google Scholar 

  2. G.L. Bennett, in CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995).

    Google Scholar 

  3. E.A. Skrabek and D.S. Trimmer, in CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995).

    Google Scholar 

  4. P.J. Price, Philos. Mag. 46, 1252 (1955).

    Article  Google Scholar 

  5. H.J. Goldsmid, Proc. Phys. Soc. B 69, 203 (1956).

    Article  Google Scholar 

  6. R.P. Chasmar and R. Stratton, J. Electron. Control 7, 52 (1959).

    Article  Google Scholar 

  7. A.F. Ioffe, Physics of Semiconductors (London: Infosearch, 1960).

    Google Scholar 

  8. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

  9. H.J. Goldsmid, Introduction to Thermoelectricity (Heidelberg: Springer, 2010).

    Book  Google Scholar 

  10. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  11. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  Google Scholar 

  12. R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  13. M.N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K.E. Goodson, J. Appl. Phys. 90, 763 (2001).

    Article  Google Scholar 

  14. X.J. Tan, H.Z. Shao, T.Q. Hu, G.Q. Liu, J. Jiang, and H.C. Jiang, Phys. Chem. Chem. Phys. 17, 22872 (2015).

    Article  Google Scholar 

  15. H.J. Goldsmid and J.W. Sharp, Energies 8, 6451 (2015).

    Article  Google Scholar 

  16. E. Muller, W. Heiliger, P. Reinshaus, and H. Sussman, Proceedings of the 15th International Conference on Thermoelectrics, Pasadena, 1996.

  17. Z.M. Gibbs, H.S. Kim, H. Wang, and G. Snyder, J Appl. Phys. Lett. 106, 022112 (2015).

    Article  Google Scholar 

  18. H. Li, H. Jing, Y. Han, Y. Xu, G.Q. Lu, and L. Xu, J. Alloy. Compd. 576, 369 (2013).

    Article  Google Scholar 

  19. M.I. Fedorov and V.K. Zaitsev, in Thermoelectrics Handbook, Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC, 2006).

    Google Scholar 

  20. C. Fu, T. Zhu, Y. Liu, H. Xie, and X. Zhao, Energy Environ. Sci. 8, 216 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Julian Goldsmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julian Goldsmid, H. Towards Improved Thermoelectric Generator Materials. J. Electron. Mater. 46, 2599–2603 (2017). https://doi.org/10.1007/s11664-016-4781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4781-1

Keywords

Navigation