Skip to main content
Log in

Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the –NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-C. Liao, Z.-K. Kao, and A.C.S. Appl, Mater. Interfaces 4, 5109 (2012).

    Article  Google Scholar 

  2. D.I. Petukhov, M.N. Kirikova, A.A. Bessonov, and M.J.A. Bailey, Mater. Lett. 132, 302 (2014).

    Article  Google Scholar 

  3. T. Kazuhiko, O. Miki, K. Keisuke, C. Katsumi, U. Hirobumi, Jpn. J. Appl. Phys. 53, 05HC02 (2014).

  4. D. Zabetakis, W.J. Dressick, and A.C.S. Appl, Mater. Interfaces 1, 4 (2009).

    Article  Google Scholar 

  5. M.S. Miller, G.J.E. Davidson, B.J. Sahli, C.M. Mailloux, and T.B. Carmichael, Adv. Mater. 20, 59 (2008).

    Article  Google Scholar 

  6. Y. Lu, Appl. Surf. Sci. 256, 3554 (2010).

    Article  Google Scholar 

  7. R.H. Guo, S.X. Jiang, Y.D. Zheng, and J.W. Lan, J. Appl. Polym. Sci. 127, 4186 (2013).

    Article  Google Scholar 

  8. S. Onclin, B.J. Ravoo, and D.N. Reinhoudt, Angew. Chem. Int. Edit. 44, 6282 (2005).

    Article  Google Scholar 

  9. Y. Li, D. Chen, Q. Lu, X. Qian, Z. Zhu, and J. Yin, Appl. Surf. Sci. 241, 471 (2005).

    Article  Google Scholar 

  10. S. Sawada, Y. Masuda, P. Zhu, and K. Koumoto, Langmuir 22, 332 (2005).

    Article  Google Scholar 

  11. The International Roadmap for Semiconductors (ITRS). www.itrs.net. Accessed 02 May 2015.

  12. www.3d-ic.org. Accessed 02 May 2015.

  13. P. Garrou, M. Koyanagi, and P. Ramm, 3D IC Integration, Handbook of 3D Integration, 1st ed. (Weinheim: Wiley-VCH, 2014).

    Google Scholar 

  14. JEP158: 3D Chip Stack With Through-Silicon Vias (TSVS): Identifying, Evaluating and Understanding Reliability Interactions. www.jedec.org. Accessed 02 May 2015.

  15. M. Lefter, G.R. Voicu, M. Taouil, M. Enachescu, S. Hamdioui, and S. D. Cotofana, in Design, Automation & Test in Europe Conference & Exhibition (2013).

  16. A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, and M. Ieong, IBM J. Res. Dev. 50, 491 (2006).

    Article  Google Scholar 

  17. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligianni, IBM J. Res. Dev. 42, 567 (1998).

    Article  Google Scholar 

  18. P.C. Andricacos, Interface 8, 32 (1999).

    Google Scholar 

  19. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, J. Electroanal. Chem. 559, 137 (2003).

    Article  Google Scholar 

  20. Z. Yang, X. Wang, N. Li, Z. Wang, and Z. Wang, Electrochim. Acta 56, 3317 (2011).

    Article  Google Scholar 

  21. J. Bea, K. Lee, T. Fukushima, T. Tanaka, and M. Koyanagi, Electron Device Lett. 32, 940 (2011).

    Article  Google Scholar 

  22. X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, Appl. Phys. Lett. 88, 151912 (2006).

    Article  Google Scholar 

  23. M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, and T. Osaka, Electrochim. Acta 51, 916 (2005).

    Article  Google Scholar 

  24. T. Osaka and M. Yoshino, Electrochim. Acta 53, 271 (2007).

    Article  Google Scholar 

  25. M. Hasegawa, Y. Negishi, T. Nakanishi, and T. Osaka, J. Electrochem. Soc. 152, C221 (2005).

    Article  Google Scholar 

  26. M. Malki, A. Rozenblat-Raz, A. Duhin, A. Inberg, D. Horvitz, and Y. Shacham-Diamand, Surf. Coat. Technol. 252, 1 (2014).

    Article  Google Scholar 

  27. D. Liu, Z. Yang, and C. Zhang, Mat. Sci. Eng. B 166, 67 (2010).

    Article  Google Scholar 

  28. M. Zhu, M.Z. Lerum, and W. Chen, Langmuir 28, 416 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Magagnin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernasconi, R., Molazemhosseini, A., Cervati, M. et al. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics. J. Electron. Mater. 45, 5449–5455 (2016). https://doi.org/10.1007/s11664-016-4753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4753-5

Keywords

Navigation