Skip to main content
Log in

Circuit Compatible Model for Electrostatic Doped Schottky Barrier CNTFET

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper proposes a circuit compatible model for electrostatic doped Schottky barrier carbon nanotube field effect transistor (ED-SBCNTFET). The proposed model is an extension of the Schottky barrier carbon nanotube field effect transistor (SBCNTFET) to ED-SBCNTFET by adding polarity gates, which are used to create electrostatic doping. In ED-SBCNTFET, electrostatic doping is responsible for a fermi level shift of source and drain regions. A mathematical relation has been developed between fermi level shift and polarity gate bias. Both current–voltage (IV) and capacitance–voltage (CV) characteristics have been efficiently modeled. The results are compared with the reported semi-classical model and simulations from NanoTCAD ViDES for validation. The proposed model is much faster than numerical models as it denies self consistent equations. Finally, circuit application is demonstrated by simulating inverter using the proposed model in HSPICE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (ITRS), Emerging Research Devices Summary (2013).http://public.itrs.net/ITRS%201999-2014%20Mtgs%20Presentations%20&%20Links/2013ITRS/2013Chapters/2013ExecutiveSummary.pdf. Accessed 2 Dec 2014.

  2. Y.-B. Kim, Trans. Electr. Electron. Mater. 10, 93 (2009).

    Article  Google Scholar 

  3. H. Iwai, Microelectron. Eng. 86, 1520 (2009).

    Article  Google Scholar 

  4. J. Wu, Y.-L. Shen, K. Reinhardt, H. Szu, and B. Dong, in Proceedings of the Applied Computational Intelligence and Soft Computing, (2013), pp. 113.

  5. M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883 (1995).

    Article  Google Scholar 

  6. H. Li, W.-Y. Yin, K. Banerjee, and J.-F. Mao, IEEE Tran. Electron. Devices 55, 1328 (2008).

    Article  Google Scholar 

  7. K. Singh and B. Raj, J. Electron. Mater. 44, 4825 (2015).

    Article  Google Scholar 

  8. Y.M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, IEEE Trans. Nanotechnol. 4, 481 (2005).

    Article  Google Scholar 

  9. J. Ali, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).

    Article  Google Scholar 

  10. Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).

    Article  Google Scholar 

  11. S. Fregonese, H. Cazin d’Honincthun, J. Goguet, C. Maneux, T. Zimmer, J.-P. Bourgoin, P. Dollfus, and S. Galdin-Retailleau, IEEE Trans. Electron Devices 55, 1317 (2008).

    Article  Google Scholar 

  12. J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and P. Avouris, IEEE Trans. Electron Devices 52, 2568 (2005).

    Article  Google Scholar 

  13. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nat. Mater. 1, 241 (2002).

    Article  Google Scholar 

  14. A. Rahman, J. Guo, S. Datta, and M.S. Lundstrom, IEEE Trans. Electron Devices 50, 1853 (2003).

    Article  Google Scholar 

  15. G. Fiori, and G. Iannaccone, NanoTCAD ViDES (2008).

  16. X. Yang and K. Mohanram, IEEE Electron Device Lett. 32, 231 (2011).

    Article  Google Scholar 

  17. J. Knoch and M.R. Muller, IEEE Trans. Nanotechnol. 13, 1044 (2014).

    Article  Google Scholar 

  18. S. Iijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  19. A. Javey, R. Tu, D. Farmer, J. Guo, R. Gordon, and H. Dai, Nano Lett. 5, 345 (2005).

    Article  Google Scholar 

  20. M. Najari, S. Fregonese, C. Maneux, H. Mnif, N. Masmoudi, and T. Zimmer, IEEE Trans. Electron Devices 58, 195 (2011).

    Article  Google Scholar 

  21. J. Guo, M. Lundstrom, and S. Datta, Appl. Phys. Lett. 80, 3192 (2002).

    Article  Google Scholar 

  22. J. Knoch and J. Appenzeller, Phys. Status Solidi (A) 205, 679 (2008).

    Article  Google Scholar 

  23. J. Knoch, and J. Appenzeller, in Proceedings of the AmIware Hardware Technology Drivers of Ambient Intelligence, (Springer Netherlands, 2006), pp. 371–402.

  24. R. Yan, A. Ourmazd, and K. Lee, IEEE Trans. Electron Devices 39, 1704 (1992).

    Article  Google Scholar 

  25. D.S. Hien, N.T. Luong, T.T.A. Tuan, and D.V. Nga, J. Phys: Conf. Ser. 187, 012061 (2009).

    Google Scholar 

  26. Y. Xuebei, G. Fiori, G. Iannaccone, and K. Mohanram, in 20th Symposium on Great Lakes Symposium on VLSI, pp. 233–238 (2010).

  27. A. Raychowdhury, S. Mukhopadhyay, and K. Roy, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23, 1411 (2004).

    Article  Google Scholar 

  28. J.W. Mintmire and C.T. White, Phys. Rev. Lett. 81, 2506 (1998).

    Article  Google Scholar 

  29. H. Abebe, Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling. (2004). http://www.techconnectworld.com/Microtech2011/program/pdf/WCM2011-HAbebe.pdf. Accessed 25 August 2015.

  30. B.G. Streetman, and S. Banerjee, Solid State Electronics Devices, 6th ed. (Prentice Hall, India, 2000) pp. 89–92.

  31. J.M.M. Prado, Current transport modeling of carbon nanotube field effect transistors for analysis and design of integrated circuits, PhD dissertation, Louisiana State University, Baton Rouge (2008).

  32. NANOHUB Simulations (2014). https://nanohub.org/tools/vides. Accessed 27 Oct 2015.

  33. S.K. Sinha and S. Chaudhury, IEEE Trans. Nanotechnol. 12, 958 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Khosla, M. & Raj, B. Circuit Compatible Model for Electrostatic Doped Schottky Barrier CNTFET. J. Electron. Mater. 45, 5381–5390 (2016). https://doi.org/10.1007/s11664-016-4743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4743-7

Keywords

Navigation