Skip to main content
Log in

Dislocation Reduction in HgCdTe Mesa Structures Formed on CdTe/Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mercury cadmium telluride (MCT) epilayers have been grown on CdTe/Si using molecular beam epitaxy and 8-μm-deep mesa structures formed using plasma etching. Following previous work done on etching mesas and subjecting material to thermal cycle annealing, we set out to determine the limits and underlying physics of dislocation reduction in mesa-etched and annealed MCT. This paper describes the dependence of dislocation reduction on anneal time, cycle annealing, temperature, and etch depth. We show dislocation density reduction below 3 × 105 cm−2 in 10-μm-wide, long-bar mesas along the \( [0\bar{1}1] \) orientation with only a 5-min anneal at 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Johnson, D. Rhiger, J. Rosbeck, J. Peterson, S. Taylor, and M. Boyd, J. Vac. Sci. Technol. B 10, 1499 (1992).

    Article  Google Scholar 

  2. J. Benson, S. Farrell, G. Brill, Y. Chen, P. Wijewarnasuriay, L. Bubulac, P. Smith, R. Jacobs, J. Markunas, M. Jaime-Vasquez, L. Almeida, A. Stoltz, U. Lee, M. Vilela, J. Peterson, S. Johnson, D. Lofgreen, and D. Rhiger, J. Electron. Mater. 40, 1847 (2011).

    Article  Google Scholar 

  3. N. Bassim, M.E. Twigg, C.R. Eddy, J.C. Culbertson, M.A. Mastro, R.L. Henry, R.T. Holm, P.G. Neudeck, A.J. Trunek, and J.A. Powell, Appl. Phys. Lett. 86, 1902 (2005).

    Article  Google Scholar 

  4. X. Zhang, I. Rodriguez, P. Li, F. Jain, and J. Ayersi, J. Electron. Mater. 30, 667 (2001).

    Article  Google Scholar 

  5. T. Tezuka, N. Sugiyama, and S. Takagi, J. Appl. Phys. 94, 7553 (2003).

    Article  Google Scholar 

  6. A. Stoltz, J. Benson, M. Carmody, S. Farrell, P. Wijewarnasuriya, G. Brill, R. Jacobs, and Y. Chen, J. Electron. Mater. 40, 1785 (2011).

    Article  Google Scholar 

  7. A. Stoltz, J. Benson, M. Carmody, S. Farrell, P. Wijewarnasuriya, G. Brill, R. Jacobs, and Y. Chen, J. Electron. Mater. 41, 2949 (2012).

    Article  Google Scholar 

  8. S. Farrell, Dislocation Density Reduction in Cadmium Telluride and Mercury Cadmium Telluride Grown on Silicon Using Thermal Cycle Annealing (Fairfax: ProQuest Dissertations and Theses, 2011).

  9. J. Hirth, Theory of Dislocations (New York: Wiley, 1982).

    Google Scholar 

  10. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications (Chichester: Wiley, 2011).

    Google Scholar 

  11. M. Carmody, D. Lee, M. Zandian, J. Phillips, and J. Arias, J. Electron. Mater. 32, 710 (2003).

    Article  Google Scholar 

  12. S. Farrell, M. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J. Benson, and K. Harris, J. Electron. Mater. 42, 3097 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Defense Advanced Research Projects Agency (DARPA) for funding through Army Research Office (ARO) Contract #W911NF-11-2-0049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Simingalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simingalam, S., Pattison, J., Chen, Y. et al. Dislocation Reduction in HgCdTe Mesa Structures Formed on CdTe/Si. J. Electron. Mater. 45, 4668–4673 (2016). https://doi.org/10.1007/s11664-016-4544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4544-z

Keywords

Navigation