Skip to main content
Log in

The Effect of Phonons in RbCl Quantum Pseudodot Qubits

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

By employing the Pekar variational method, the eigenenergies and eigenfunctions of the ground and first-excited states are obtained in a strong electron-longitudinal optical (LO) phonon coupling RbCl quantum pseudodot (QPD). A single qubit can be realized in this two-level quantum system. The electron probability density (EPD) oscillates in the RbCl QPD with a certain period. The investigated results show that the EPD rises with raising the chemical potential of the two-dimensional electron gas and the zero point of the pseudoharmonic potential, whereas it decays with increasing the polaron radius. However, the oscillating period (OP) possesses precisely the opposite characteristics. Through the results and analysis above, we find three ways to adjust the EPD and the OP via changing the chemical potential of the two-dimensional electron gas, the zero point of the pseudoharmonic potential, and the polaron radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

    Article  Google Scholar 

  2. A. Vovk, V. Golub, O. Salyuk, V.N. Krivoruchko, and A.I. Marchenko, J. Appl. Phys. 117, 073903 (2015).

    Article  Google Scholar 

  3. O.N. Martyanov, V.F. Yudanov, R.N. Lee, S.A. Nepijko, H.J. Elmers, R. Hertel, C.M. Schneider, and G. Schönhense, Phys. Rev. B 75, 174429 (2007).

    Article  Google Scholar 

  4. M. Ikezawa, S.V. Nair, H.W. Ren, Y. Masumoto, and H. Ruda, Phys. Rev. B 73, 125321 (2006).

    Article  Google Scholar 

  5. T. Chakraborty and P. Pietiläinen, Phys. Rev. Lett. 95, 136603 (2005).

    Article  Google Scholar 

  6. S.M. Ikhdair and M. Hamzavi, Phys. B 407, 4198 (2012).

    Article  Google Scholar 

  7. I. Karakurt, V.J. Goldman, J. Liu, and A. Zaslavsky, Phys. Rev. Lett. 87, 146801 (2001).

    Article  Google Scholar 

  8. S.M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

    Article  Google Scholar 

  9. S. Jaziri and R. Bennaceur, J. Phys. III 5, 1565 (1995).

    Google Scholar 

  10. E.N. Bogachek and U. Landman, Phys. Rev. B 52, 14067 (1995).

    Article  Google Scholar 

  11. W. Xiao, B. Qi, and J.L. Xiao, J. Low Temp. Phys. 179, 166 (2015).

    Article  Google Scholar 

  12. E.M. Kazaryan, L.S. Petrosyan, and H.A. Sarkisyan, Physica E 16, 174 (2003).

    Article  Google Scholar 

  13. N. Kim, G. Ihm, H.S. Sim, and T.W. Kang, Phys. Rev. B 63, 235317 (2001).

    Article  Google Scholar 

  14. A. Cetin, Phys. Lett. A 372, 3852 (2008).

    Article  Google Scholar 

  15. R. Khordad, Superlatt. Microstruct. 62, 166 (2013).

    Article  Google Scholar 

  16. R. Khordad, Physica E 69, 249 (2015).

    Article  Google Scholar 

  17. R. Khordad, Int. J. Mod. Phys. B 29, 1550058 (2015).

    Article  Google Scholar 

  18. X.J. Ma, B. Qi, and J.L. Xiao, J. Low Temp. Phys. 180, 315 (2015).

    Article  Google Scholar 

  19. J.L. Xiao, Mod. Phys. Lett. B 29, 1550098 (2015).

    Article  Google Scholar 

  20. L.D. Landau and S.I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948).

    Google Scholar 

  21. S.I. Pekar and M.F. Deigen, Zh. Eksp. Teor. Fiz. 18, 481 (1948).

    Google Scholar 

  22. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Berlin: Akademie Verlag, 1954).

    Google Scholar 

  23. J.L. Xiao, J. Low Temp. Phys. 172, 122 (2013).

    Article  Google Scholar 

  24. Z.H. Ding, Y. Sun, and J.L. Xiao, Int. J. Quantum. Inf. 10, 1250077 (2012).

    Article  Google Scholar 

  25. W. Xiao and J.L. Xiao, Superlatt. Microstruct. 52, 851 (2012).

    Article  Google Scholar 

  26. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (Amsterdam: North-Holland, 1972), p. 721.

    Google Scholar 

Download references

Acknowledgement

This project was supported by the National Science Foundation of China under Grant No. 11464033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Ding, ZH. & Xiao, JL. The Effect of Phonons in RbCl Quantum Pseudodot Qubits. J. Electron. Mater. 45, 3576–3580 (2016). https://doi.org/10.1007/s11664-016-4538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4538-x

Keywords

Navigation