Skip to main content
Log in

Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WNx Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Mohammad, A. Salvador, and H. Morkoc, Proc. IEEE 83, 1306 (1995).

    Article  Google Scholar 

  2. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  3. U.K. Mishra, P. Parikh, and Y.F. Wu, Proc. IEEE 90, 1022 (2002).

    Article  Google Scholar 

  4. U.K. Mishra, L. Shen, T.E. Kazior, and Y.F. Wu, Proc. IEEE 96, 287 (2008).

    Article  Google Scholar 

  5. R. Gong, J. Wang, S. Liu, Z. Dong, M. Yu, C.P. Wen, Y. Cai, and B. Zhang, Appl. Phys. Lett. 97, 062115 (2010).

    Article  Google Scholar 

  6. M. Piazza, C. Dua, M. Oualli, E. Morvan, D. Carisetti, and F. Wyczisk, Microelectron. Reliab. 49, 1222 (2009).

    Article  Google Scholar 

  7. H. Morkoc and S.N. Mohammad, Science 267, 51 (1995).

    Article  Google Scholar 

  8. N.A. Papanicolaou, M.V. Rao, J. Mittereder, and W.T. Anderson, J. Vac. Sci. Technol., B 19, 261 (2001).

    Article  Google Scholar 

  9. B. Jacobs, M.C.J.C.M. Kramer, E.J. Geluk, and F. Karouta, J. Cryst. Growth 241, 15 (2002).

    Article  Google Scholar 

  10. X. Kong, K. Wei, G. Liu, and X. Liu, J. Phys. D Appl. Phys. 45, 265101 (2012).

    Article  Google Scholar 

  11. V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, J. Appl. Phys. 92, 1712 (2002).

    Article  Google Scholar 

  12. A. Vertiatchikh, E. Kaminsky, J. Teetsov, and K. Robinson, Solid-State Electron. 50, 1425 (2006).

    Article  Google Scholar 

  13. Z.M. Zhao, R.L. Jiang, P. Chen, D.J. Xi, Q.H. Yu, B. Shen, R. Zhang, Y. Shi, S.L. Gu, and Y.D. Zheng, Appl. Phys. Lett. 79, 218 (2001).

    Article  Google Scholar 

  14. C.T. Lee and H.W. Kao, Appl. Phys. Lett. 76, 2364 (2000).

    Article  Google Scholar 

  15. A. Motayed, R. Bathe, M.C. Wood, O.S. Diouf, R.D. Vispute, and S.N. Mohammad, Appl. Phys. 93, 1087 (2003).

  16. D.F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, and S.N. Mohammada, J. Appl. Phys. 89, 6214 (2001).

    Article  Google Scholar 

  17. Z.H. Dong, J.Y. Wang, C.P. Wen, S.G. Liu, R.M. Gong, M. Yu, Y.L. Hao, F.J. Xu, B. Shen, and Y.Y. Wang, Microelectron. Reliab. 52, 434 (2012).

    Article  Google Scholar 

  18. H.S. Lee, D.S. Lee, and T. Palacios, IEEE Electron Device Lett. 32, 1519 (2011).

    Article  Google Scholar 

  19. C.Y. Lu, E.Y. Chang, J.C. Huang, C.T. Chang, and C.T. Lee, Electron. Lett. 45, 1348 (2009).

    Article  Google Scholar 

  20. T.E. Hsieh, Y.C. Lin, F.M. Li, W.C. Shi, Y.X. Huang, W.C. Lan, P.C. Chin, and E.Y. Chang, J. Electron. Mater. 44, 4700 (2015).

    Article  Google Scholar 

  21. F. Iucolano, F. Roccaforte, A. Alberti, C. Bongiorno, S. Di Franco, and V. Raineri, J. Appl. Phys. 100, 123706 (2006).

    Article  Google Scholar 

  22. A. Messica, U. Meirav, and H. Shtrikman, Thin Solid Films 257, 54 (1995).

    Article  Google Scholar 

  23. Y.C. Lin, C.H. Chang, F.M. Li, L.H. Hsu, and E.Y. Chang, Appl. Phys. Express 6, 091003 (2013).

    Article  Google Scholar 

  24. T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, IEEE Trans. Electron. Devices 50, 2015 (2003).

  25. J.S. Kwak, S.E. Mohney, J.Y. Lin, and R.S. Kern, Semicond. Sci. Technol. 15, 756 (2000).

    Article  Google Scholar 

  26. R. Khoshhal, M. Soltanieh, and M. Mirjalili, Iranian J. Mater. Sci. Eng. 7, 24 (2010).

    Google Scholar 

  27. C. Bresolin and S. Pirotta, Microelectron. Eng. 64, 125 (2002).

    Article  Google Scholar 

  28. A.C. Schmitzy, A.T. Pingy, M. Asif Khan, Q. Chen, J.W. Yang, and I. Adesida, Semicond. Sci. Technol. 11, 1464 (1996).

    Article  Google Scholar 

  29. M. Mamor, J. Phys.: Condens. Matter 21, 335802 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by National Chung-Shan Institute of Science & Technology, Taiwan, under Grant No. NCSIST-102-V211(105) and TSMC, NCTU-UCB I-RiCE program, and Ministry of Science and Technology, Taiwan, under No. MOST 105-2911-I-009-301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Yi Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, TE., Lin, YC., Chu, CM. et al. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications. J. Electron. Mater. 45, 3285–3289 (2016). https://doi.org/10.1007/s11664-016-4534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4534-1

Keywords

Navigation