Skip to main content
Log in

Thermoelectric Properties of Microstructurally Modified CoSb3 Skutterudite by Hf-Addition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A polycrystalline phase of Hf-filled CoSb3 skutterudite was successfully prepared by the mechanical alloying technique followed by the spark plasma sintering process. X-ray diffraction and scanning electron microscopy linked with energy-dispersive x-ray spectroscopy were used to investigate the result filling the void spaces with Hf. HfCo4Sb12 skutterudite possesses a very low thermal conductivity [1.8 W/(m K)], lower than that of some lanthanide-filled skutterudites, while exhibiting p-type conduction. The anharmonicity of oscillation of the loosely bond Hf atoms, the point defects on the lattice microstructure and the large area fraction of the grain boundaries were the reasons for the significant drop in the thermal conductivity of Hf-filled CoSb3. Thus, this work is useful in deriving a pathway for improvement in thermoelectrics through the introduction of smaller rattling cations with higher mass to increase the disorder of the lattice structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, and M. Mohamad, Renew. Sust. Energ Rev. 30, 337 (2014).

    Article  Google Scholar 

  2. Y.G. Zhu, H.L. Shen, and H. Guan, J. Mater. Sci. Mater. Electron. 23, 2210 (2012).

    Article  Google Scholar 

  3. S.W. Kim, Y. Kimura, and Y. Mishima, J. Electron. Mater. 33, 1156 (2004).

    Article  Google Scholar 

  4. G.A. Slack, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995), p. 407.

    Google Scholar 

  5. D.G. Zhao, C.W. Tian, Y.T. Liu, C.W. Zhan, and L.D. Chen, J. Alloy. Compd. 509, 3166 (2011).

    Article  Google Scholar 

  6. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  Google Scholar 

  7. P.N. Alboni, X. Ji, J. He, N. Gothard, J. Hubbard, and T.M. Tritt, J. Electron. Mater. 36, 711 (2007).

    Article  Google Scholar 

  8. P. Vaqueiro, G.G. Sobany, A.V. Powell, and K.S. Knight, J. Solid State Chem. 179, 2047 (2006).

    Article  Google Scholar 

  9. Y. Kawaharada, K. Kuroaski, M. Uno, and S. Yamanaka, J. Alloy. Compd. 315, 193 (2001).

    Article  Google Scholar 

  10. S. Wan, X. Huang, P. Qiu, S. Bai, and L. Chen, Mater Design 67, 379 (2015).

    Article  Google Scholar 

  11. K.G. Liu, X. Dong, and J.X. Zhang, Mater. Chem. Phys. 96, 371 (2006).

    Article  Google Scholar 

  12. H. Li, X. Tang, and Q. Zhang, J. Electron. Mater. 38, 1224 (2009).

    Article  Google Scholar 

  13. M.D. Hornbostel, E.J. Hyer, J. Thiel, and D.C. Johnson, J. Am. Chem. Soc. 119, 2665 (1997).

    Article  Google Scholar 

  14. G.S. Nolas, G. Yoon, H. Sellinschegg, A. Smalley, and D.C. Johnson, Appl. Phys. Lett. 86, 042111 (2005).

    Article  Google Scholar 

  15. J.Y. Yang, Y.H. Chen, W. Zhu, J.Y. Peng, S.Q. Bao, X.A. Fan, and X.K. Duan, J. Solid State Chem. 179, 212 (2006).

    Article  Google Scholar 

  16. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).

    Google Scholar 

  17. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto, Appl. Phys. Lett. 89, 092121 (2006).

    Article  Google Scholar 

  18. R.C. Mallik, R. Anbalagan, K.K. Raut, A. Bali, E. Royanian, E. Bauer, G. Rogl, and P. Rogl, J. Phys.: Condens. Matter 25, 105701 (2013).

    Google Scholar 

  19. F. Laufek, J. Navratil, J. Plasil, T. Plechacek, and C. Drasar, J. Alloy. Compd. 479, 102 (2009).

    Article  Google Scholar 

  20. Kwan-Ho Park and Il-Ho Kim, J. Electron. Mater. 40, 493 (2010).

    Article  Google Scholar 

  21. Q. Zhang, C. Chen, Y.L. Kang, X.D. Li, L. Zhang, D.L. Yu, Y.J. Tian, and B. Xu, Mater. Lett. 143, 41 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by HIR (Grant No. UM.C/25/1/HIR/MOHE/ENG/29), UMRG (Grant No. RP023B-13AET), science fund (Grant No. SF020-2013), FRGS (Grant No. FP022/2014B) and IPPP (Grant No. PG024/2012B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhana Mohd Said.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 577 kb)

Supplementary material 2 (REF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, M.H., Sabri, M.F.M., Said, S.M. et al. Thermoelectric Properties of Microstructurally Modified CoSb3 Skutterudite by Hf-Addition. J. Electron. Mater. 45, 2886–2890 (2016). https://doi.org/10.1007/s11664-016-4355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4355-2

Keywords

Navigation