Skip to main content

Advertisement

Log in

High Piezoelectric Response in (Li0.5Sm0.5)2+-Modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Near the Nonergodic–Ergodic Relaxor Transition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The (Bi0.5Na0.5)TiO3-BaTiO3 system is a promising Pb-free piezoelectric material to substitute for environmentally undesirable Pb-based ferroelectrics. However, understanding the origin of its high piezoelectric response is a fundamental issue that has remained unclear for decades. Here, complex ions (Li0.5Sm0.5)2+ were introduced to dictate the stability of the electrically-induced ferroelectric state in 0.93(Bi0.5Na0.5)1−x (Li0.5Sm0.5) x TiO3-0.07BaTiO3 relaxor ceramics. The applied electric field induces a phase transition from a non-ergodic state to a ferroelectric state as well as the realignment of ferroelectric domains. The non-ergodic relaxor state with x = 0–0.02 is accompanied by relatively high piezoelectric activity and the strongest piezoelectricity is observed near the crossover from the nonergodic to the ergodic state. The stable␣ferroelectric state cannot survive after the removal of the application electric field for the high doping level due to the enhancement of the random field, which is responsible for the rapid decrease of piezoelectric properties for x > 0.02 compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  2. H. Simons, J.E. Daniels, J. Glaum, A.J. Studer, J.L. Jones, and M. Hoffman, Appl. Phys. Lett. 102, 062902 (2013).

    Article  Google Scholar 

  3. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, and J. Rödel, J. Appl. Phys. 110, 074106 (2011).

    Article  Google Scholar 

  4. D. Maurya, A. Pramanick, K. An, and S. Priya, Appl. Phys. Lett. 100, 172906 (2012).

    Article  Google Scholar 

  5. S.T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Kleebe, and J. Rödel, J. Appl. Phys. 103, 034107 (2008).

    Article  Google Scholar 

  6. R. Ranjan and A. Dviwedi, Solid State Commun. 135, 394 (2005).

    Article  Google Scholar 

  7. C. Ma, H. Guo, and X. Tan, Adv. Funct. Mater. 23, 5261 (2013).

    Article  Google Scholar 

  8. D. Maurya, M. Murayama, A. Pramanick, W.T. Reynolds Jr, K. An, and S. Priya, J. Appl. Phys. 113, 114101 (2013).

    Article  Google Scholar 

  9. J. Wu, D. Xiao, and J. Zhu, Chem. Rev. 115, 2559 (2015).

    Article  Google Scholar 

  10. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, J. Am. Chem. Soc. 136, 2905 (2014).

    Article  Google Scholar 

  11. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, Nat. Commun. 3, 748 (2012).

    Article  Google Scholar 

  12. L.-F. Wang and J.-M. Liu, Appl. Phys. Lett. 91, 092908 (2007).

    Article  Google Scholar 

  13. R. Ahluwalia, T. Lookman, A. Saxena, and W. Cao, Phys. Rev. B 72, 014112 (2005).

    Article  Google Scholar 

  14. R. Theissmann, R.L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schönau, H. Fuess, M. Knapp, H. Kungl, and M.J. Hoffmann, J. Appl. Phys. 102, 024111 (2007).

    Article  Google Scholar 

  15. Y.M. Jin, Y.U. Wang, and A.G. Khachaturyan, J. Appl. Phys. 94, 3629 (2003).

    Article  Google Scholar 

  16. H. Guo, C. Ma, X. Liu, and X. Tan, Appl. Phys. Lett. 102, 092902 (2013).

    Article  Google Scholar 

  17. D. Xue, Y. Zhou, J. Gao, X. Ding, and X. Ren, EPL 100, 17010 (2012).

    Article  Google Scholar 

  18. J. Fu, R. Zuo, and Z. Xu, Appl. Phys. Lett. 99, 062901 (2011).

    Article  Google Scholar 

  19. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I.W. Kim, K.-K. Ahn, and J.-S. Lee, J. Appl. Phys. 113, 154102 (2013).

    Article  Google Scholar 

  20. H. Simon, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).

    Article  Google Scholar 

  21. L.A. Schmitt, K.A. Schönau, R. Theissmann, H. Fuess, H. Kungl, and M.J. Hoffmann, J. Appl. Phys. 101, 074107 (2007).

    Article  Google Scholar 

  22. M. Otoničar, S.D. Škapin, B. Jančar, and D. Suvorov, J. Appl. Phys. 113, 024106 (2013).

    Article  Google Scholar 

  23. C. Ma, H. Guo, S.P. Beckman, and X. Tan, Phys. Rev. Lett. 109, 107602 (2012).

    Article  Google Scholar 

  24. J.E. Daniels, W. Jo, J. Rödel, and J.L. Jones, Appl. Phys. Lett. 95, 032904 (2009).

    Article  Google Scholar 

  25. B.W.-V. Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, Phys. Rev. B 82, 104112 (2010).

    Article  Google Scholar 

  26. W. Ge, C. Luo, C.P. Devreugd, Q. Zhang, Y. Ren, J. Li, H. Luo, and D. Viehland, Appl. Phys. Lett. 103, 241914 (2013).

    Article  Google Scholar 

  27. C. Ma, X. Tan, E. Dul’Kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).

    Article  Google Scholar 

  28. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, and R. Ranjan, Phys. Rev. B 88, 014103 (2013).

    Article  Google Scholar 

  29. W. Zeng, X. Zhou, J. Chen, J. Liao, C. Zhou, Z. Cen, T. Yang, H. Yang, Q. Zhou, G. Chen, and C. Yuan, Appl. Phys. Lett. 104, 242910 (2014).

    Article  Google Scholar 

  30. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, and T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998).

    Article  Google Scholar 

  31. C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, C. Yuan, and H. Wang, Phys. B 410, 13 (2013).

    Article  Google Scholar 

  32. W. Kleemann, J. Adv. Dielect. 2, 1241001 (2012).

    Article  Google Scholar 

  33. W. Kleemann, Phys. Status Solidi B 251, 1993 (2014).

    Article  Google Scholar 

  34. D. Gobert, R. Dittmer, J. Rödel, V.V. Shvartsman, and D.C. Lupascu, J. Am. Ceram. Soc. 97, 3904 (2014).

    Article  Google Scholar 

  35. A.A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  Google Scholar 

  36. R. Dittmer, D. Gobeljic, W. Jo, V.V. Shvartsman, D.C. Lupascu, J.L. Jones, and J. Rödel, J. Appl. Phys. 115, 084111 (2014).

    Article  Google Scholar 

  37. Y.M. Jin, Y.U. Wang, and A.G. Khachaturyan, Phys. Rev. Lett. 91, 197601 (2003).

    Article  Google Scholar 

  38. K.A. Schönau, L.A. Schmitt, M. Knapp, H. Fuess, R.-A. Eichel, H. Kungl, and M.J. Hoffmann, Phys. Rev. B 75, 184117 (2007).

    Article  Google Scholar 

  39. W. Qu, X. Zhao, and X. Tan, J. Appl. Phys. 102, 084101 (2007).

    Article  Google Scholar 

  40. Y. Sato, T. Hirayama, and Y. Ikuhara, Phys. Rev. B 107, 187601 (2011).

    Google Scholar 

Download references

Acknowledgement

Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, 61361007 and 51462005) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grants Nos. 2012GXNSFGA60002 and 2015GXNSFAA 139250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, Q., Zhou, C. et al. High Piezoelectric Response in (Li0.5Sm0.5)2+-Modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Near the Nonergodic–Ergodic Relaxor Transition. J. Electron. Mater. 45, 2967–2973 (2016). https://doi.org/10.1007/s11664-016-4347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4347-2

Keywords

Navigation