Skip to main content
Log in

Frequency and Temperature Dependence of Dielectric and Electrical Properties of Sn-Doped Lead Calcium Iron Niobate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sn-substituted lead calcium iron niobate specimens with general formula (Pb0.45Ca0.55)(Fe0.5Nb0.5)1−y Sn y O3 with 0.00 ≤ y ≤ 0.15 in steps of 0.03 have been synthesized using a two-stage method. The x-ray diffraction patterns for all the synthesized samples reveal a perovskite structure with pseudocubic symmetry. A small amount of pyrochlore phase was obtained along with the perovskite phase, decreasing with increasing Sn content up to y = 0.09. The temperature and frequency dependence of the dielectric and electrical properties of Sn-substituted lead calcium iron niobate were studied. Two dielectric anomalies were observed in ε rT plots for all the samples due to generation of oxygen vacancies. The temperature coefficient of relative permittivity, τ ε , decreased with increasing Sn content. The single, semicircular arc observed in Nyquist plots suggests a single relaxation process. The activation energies obtained from the temperature dependence of the relaxation time and grain resistance were found to be approximately comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kato, H. Kagata, and K. Nishimoto, Jpn. J. Appl. Phys. 31, 3155 (1992).

    Google Scholar 

  2. I.P. Raevski, S.P. Kubrina, S.I. Raevskaya, V.V. Titov, S.A. Prosandeeva, D.A. Sarycheva, M.A. Malitskaya, V.V. Stashenko, and I.N. Zakharchenkoa, Ferroelectrics 398, 16 (2010).

    Article  Google Scholar 

  3. E.S. Kim, Y.H. Kim, K.H. Yoon, D.H. Kim, and Y. Kim, Ferroelectrics 262, 275 (2001).

    Article  Google Scholar 

  4. Q.H. Yang, E.S. Kim, and X. Jun, Mater. Sci. Eng. B 113, 224 (2002).

    Article  Google Scholar 

  5. M. Hu, D. Zhou, D. Zhang, W. Lu, B. Li, J. Huang, and S. Gong, Mater. Sci. Eng. B 99, 403 (2003).

    Article  Google Scholar 

  6. K.H. Yoon, E.S. Kim, and J.S. Jeon, J. Eur. Ceram. Soc. 23, 2391 (2003).

    Article  Google Scholar 

  7. S. Kucheiko, J.-W. Choi, H.-J. Kim, S.-J. Yoon, and H.J. Jung, J. Am. Ceram. Soc. 80, 2937 (1997).

    Article  Google Scholar 

  8. Q. Yang, E.S. Kim, J. Xu, and Z. Meng, Mater. Sci. Eng. B 99, 332 (2003).

    Article  Google Scholar 

  9. Q.H. Yang, E.S. Kim, X. Jun, and Z. Meng, Mater. Sci. Eng. B 99, 259 (2003).

    Article  Google Scholar 

  10. E.S. Kim, J.S. Jeon, and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2583 (2003).

    Article  Google Scholar 

  11. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  Google Scholar 

  12. C.Y. Kang, J.W. Choi, S.J. Yoon, and H.J. Kim, J. Mater. Sci. Mater. Electron. 10, 661 (1999).

    Article  Google Scholar 

  13. C. Ang and Z. Yu, Phys. Rev. B 61, 957 (2000).

    Article  Google Scholar 

  14. G. Goodman, R.C. Buchanan, and T.G. Reynolds, Ceramic Materials for Electronics; Processing, Properties and Applications (New York: Marcel Dekker, 1991), p. 32.

    Google Scholar 

  15. I.P. Raevski, S.A. Kuropatkina, S.P. Kubrin, S.I. RaevskayaI, V.V. Titov, D.A. Sarychev, M.A. Malitskaya, A.S. Bogatin, and I.N. Zakharchenko, Ferroelectrics 379, 48 (2009).

    Article  Google Scholar 

  16. S. Saha and T.P. Sinha, Phys. Rev. B 65, 134103 (2002).

    Article  Google Scholar 

  17. P.Q. Mantus, J. Eur. Ceram. Soc. 19, 2079 (1999).

    Article  Google Scholar 

  18. W. Chen, W. Zhu, O.K. Tan, and X.F. Chen, J. Appl. Phys. 108, 034101 (2010).

    Article  Google Scholar 

  19. N. Ponpandian and A. Narayanasamy, J. Appl. Phys. 92, 2770 (2002).

    Article  Google Scholar 

  20. K. Subrat and P. Kumar, Process. Appl. Ceram. 7, 181 (2013).

    Google Scholar 

  21. A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Marssi, and I. Lukyanchuk, Eur. Phys. J. B 85, 215 (2012).

    Article  Google Scholar 

  22. M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graca, and A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011).

    Article  Google Scholar 

  23. N.K. Singh, P. Kumar, A.K. Sharma, and R.N.P. Choudhary, Mater. Sci. Appl. 2, 1593 (2011).

    Google Scholar 

  24. Priyanka and A.K. Jha, Bull. Mater. Sci. 36, 135 (2013).

    Article  Google Scholar 

  25. T.M. Clark and B.J. Evans, IEEE Trans. Magn. 33, 3745 (1997).

    Article  Google Scholar 

  26. A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006).

    Article  Google Scholar 

  27. B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).

    Article  Google Scholar 

  28. J. Plocharski and W. Wieczoreck, Solid State Ionics 28–30, 979 (1988).

    Article  Google Scholar 

  29. R.S.T.M. Sohn, A.A.M. Macedo, M.M. Costa, S.E. Mazzetto, and A.S.B. Sombra, Phys. Scr. 82, 055702 (2010).

    Article  Google Scholar 

  30. Y. Yang, S.T. Zhang, H.B. Huang, Y.F. Chen, Z.G. Liu, and J.M. Liu, Mater. Lett. 59, 1767 (2005).

    Article  Google Scholar 

  31. G.C. Kuezynski, N.A. Hooton, and C.F. Gibbon, Sintering and Related Phenomena (New York: Gordon and Breach Science, 1967), p. 65.

    Google Scholar 

  32. S.B. Majumder, S. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 99, 024108 (2006).

    Article  Google Scholar 

  33. D. Varsheny, R.N.P. Choudhary, C. Rinaldi, and R.S. Katiyar, Appl. Phys. A 89, 793 (2007).

    Article  Google Scholar 

  34. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, and L. Jastrabik, J. Appl. Phys. 93, 4130 (2003).

    Article  Google Scholar 

  35. A.A. Bokov, L.A. Shpak, and I.P. Rayevsky, J. Phys. Chem. Solids 54, 495 (1993).

    Article  Google Scholar 

  36. D. Bochenek, P. Kruk, R. Skulski, and P. Wawrzala, J. Electroceram. 26, 8 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the University Grant Commission for a grant to Guru Nanak Dev University for the potential of excellence program in material sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhleen Bindra Narang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, M., Bahel, S. & Bindra Narang, S. Frequency and Temperature Dependence of Dielectric and Electrical Properties of Sn-Doped Lead Calcium Iron Niobate. J. Electron. Mater. 45, 959–969 (2016). https://doi.org/10.1007/s11664-015-4244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4244-0

Keywords

Navigation