Skip to main content
Log in

Dielectric and Electrical Properties of BiFeO3-PbZrO3 Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric and electrical properties of composites prepared by addition of two different amounts of PbZrO3 (PZO) to BiFeO3 (BFO) are discussed. The composites (1 − x)(BiFeO3)-x(PbZrO3) (x = 0.5, 0.7; i.e., 0.5BF-0.5PZ and 0.3BF-0.7PZ) were synthesized by solid-state reaction. X-ray diffraction analysis confirmed formation of composites with a rhombohedral structure at room temperature. Scanning electron microscopy revealed homogeneously distributed grains. Dielectric constants and dielectric loss increased with decreasing PZO content whereas the transition temperature shifted to higher temperature with decreasing PZO content. Hysteresis loops confirmed the ferroelectric nature of the materials. The Nyquist plot was indicative of the contribution of the bulk effect and a small contribution from the grain boundary effect. Temperature-dependent relaxation occurred for both materials. Non-Debye type electrical impedance was confirmed by asymmetric peak broadening and a spread of relaxation times. Activation energies were calculated from plots of ac conductivity as a function of temperature by linear fitting. Dc and ac conductivity increased with increasing temperature. Activation energies calculated from the complex impedance plot and from the fitted Jonscher power law were very similar, implying conduction by a similar type of charge carrier in both composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Freitas, G.S. Dias, O.A. Protzek, D.Z. Montanher, I.B. Catellani, D.M. Silva, L.F. Cótica, and I.A. Santos, J. Adv. Ceram. 2, 103 (2013).

    Article  Google Scholar 

  2. W. Sakamoto, A. Iwata, and T. Yogo, J. Appl. Phys. 104, 104106 (2008).

    Article  Google Scholar 

  3. M.J. Lancaster, J. Powell, and A. Porch, Supercond. Sci. Technol. 11, 1323 (1998).

    Article  Google Scholar 

  4. G.H. Lin, R. Fu, S. He, J. Sun, X. Zhang, and L. Sengupta, Mater. Res. Soc. Symp. Proc. 720, 15 (2002).

    Google Scholar 

  5. W. Chang, S.W. Kirchoefer, J.M. Pond, J.A. Bellotti, and S.B. Qadri, J. Appl. Phys. 96, 11 (2004).

    Google Scholar 

  6. V.A. Khomchenko, D.A. Kiselev, M. Kopcewicz, M. Maglione, V.V. Shvartsman, P. Borisov, W. Kleemann, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, R.M. Rubinger, N.A. Sobolev, J.M. Vieira, and A.L. Kholkin, J. Magn. Magn. Mater. 321, 1692 (2009).

    Article  Google Scholar 

  7. R.N.P. Choudhary, K. Perez, P. Bhattacharya, and R.S. Katiyar, Appl. Phys. 86, 131 (2007).

    Article  Google Scholar 

  8. R. Mazumder and A. Sen, J. Alloy. Compd. 475, 577 (2009).

    Article  Google Scholar 

  9. J. Li, L. Wang, L. Bian, P. Zhao, and J. Xu, Adv. Mater. Res. 785, 817 (2013).

    Google Scholar 

  10. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, and M. Kumar, J. Appl. Phys. 112, 094102 (2012).

    Article  Google Scholar 

  11. J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li, H. Zhao, Y. Zhao, S. Ma, T.L. Ren, Y. Guan, X. Gao, and Y. Zhao, J. Appl. Phys. 114, 154103 (2013).

    Article  Google Scholar 

  12. R. Gerson, P.C. Chou, and W.J. James, J. Appl. Phys. 38, 55 (1967).

    Article  Google Scholar 

  13. B.U.M. Rao, G. Srinivasan, V.S. Babu, and M.S. Seehra, J. Appl. Phys. 69, 5463 (1991).

    Article  Google Scholar 

  14. S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, and P. Nayak, Front. Mater. Sci. 7, 295 (2013).

    Article  Google Scholar 

  15. S.K. Satpathy, N.K. Mohanty, A.K. Behera, and B. Behera, Mater. Sci. Pol. 32, 59 (2014).

    Article  Google Scholar 

  16. E. Wu, J. Appl. Cryst. 22, 506 (1989).

    Article  Google Scholar 

  17. S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, S.K. Korchagina, L.F. Rybakova, and A. Hewat, Solid State Sci. 10, 1875 (2008).

    Article  Google Scholar 

  18. V. Kothai and R. Ranjan, Bull. Mater. Sci. 35, 157 (2012).

    Article  Google Scholar 

  19. P. Scherrer and G. Nachrichten, Math. Phys. Klasse. 2, 98 (1918).

    Google Scholar 

  20. E.E. Narimanov and C.M. Varma, Phys. Rev. B 65, 024429 (2001).

    Article  Google Scholar 

  21. L. Sheng, D.Y. Xing, D.N. Sheng, and C.S. Ting, Phys. Rev. B 56, R7053 (1997).

    Article  Google Scholar 

  22. X. Hong, A. Posadas, A. Lin, and C.H. Ahn, Phy. Rev. B 68, 134415 (2003).

    Article  Google Scholar 

  23. M. Ghasemifard, M. Daneshvar, and M. Ghamari, World J. Nano Sci. Eng. 3, 100 (2013).

    Article  Google Scholar 

  24. G. Goodman, R.C. Buchanan, and T.G. Reynolds, Ceramic materials for electronics; processing, properties, and applications, ed. R.C. Buchanan (New York: Marcel Dekker Inc., 1991), p. 32.

    Google Scholar 

  25. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. 74, 125 (1976).

    Article  Google Scholar 

  26. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009).

    Article  Google Scholar 

  27. S. Sen, P. Pramanik, and R.N.P. Choudhary, Appl. Phys. A 82, 549 (2006).

    Article  Google Scholar 

  28. A.R. James and K. Srinivas, Mater. Res. Bull. 34, 1301 (1999).

    Article  Google Scholar 

  29. C.K. Suman, K. Prasad, and R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006).

    Article  Google Scholar 

  30. W.M. Zhu and Z.G. Ye, Ceram. Int. 30, 1435 (2004).

    Article  Google Scholar 

  31. M. Mudarra, J. Belana, J.C. Canadas, J.A. Diego, and J. Sellares, J. Appl. Phys. 88, 4807 (2000).

    Article  Google Scholar 

  32. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, and I. Gruszka, J. Phys. D 38, 1450 (2005).

    Article  Google Scholar 

  33. F. Borsa, D.R. Torgeson, S.W. Martin, and H.K. Patel, Phy. Rev. 46, 795 (1992).

    Article  Google Scholar 

  34. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. 74, 125 (1976).

    Article  Google Scholar 

  35. D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  Google Scholar 

  36. P.B. Macedo, C.T. Moynihan, and R. Bose, Phys. Chem. Glasses 13, 171 (1972).

    Google Scholar 

  37. B. Behera, P. Nayak, and R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289 (2008).

    Google Scholar 

  38. A.K. Jonscher, Nature 256, 673 (1977).

    Article  Google Scholar 

  39. R. Kashyap, O.P. Thakur, and R.P. Tandon, Ceram. Int. 38, 3029 (2012).

    Article  Google Scholar 

  40. M. Haibado, B. Louati, F. Hlel, and K. Guidara, Bull. Mater. Sci. 34, 1069 (2011).

    Article  Google Scholar 

  41. P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, and M. Shamsuddin, Ceram. Int. 38, 1281 (2012).

    Article  Google Scholar 

  42. M.A. Afifi, A.E. Bekheet, E. Abd Elwahabb, and H.E. Atyia, Vacuum 61, 9 (2001).

    Article  Google Scholar 

  43. F. Yakuphanoglua, Y. Aydogdua, U. Schatzschneiderb, and E. Rentschlerb, Solid State Commun. 128, 63 (2003).

    Article  Google Scholar 

  44. A.A. Ebnalwaled, International Journal of Basic & Applied Sciences IJBAS-IJENS 11, 154 (2011).

    Google Scholar 

  45. C. Cramer, S. Brunklaus, E. Ratai, and Y. Gao, Phys. Rev. Lett. 91, 266601 (2003).

    Article  Google Scholar 

  46. B. Louati, M. Gargouri, K. Guidara, and T. Mhiri, J. Phys. Chem. Solids 66, 762 (2005).

    Article  Google Scholar 

  47. R.H. Chen, R.Y. Chang, and S.C. Shern, J. Phys. Chem. Solids 63, 2069 (2002).

    Article  Google Scholar 

  48. B. Louati, M. Gargouri, K. Guidara, and T. Mhiri, J. Phys. Chem. Solids 66, 762 (2005).

    Article  Google Scholar 

  49. T. Sujatha, G.B. Devidas, T. Sankarappa, and S.M. Hanagodimath, Int. J. Eng. Sci. 2, 302 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support through DRS-I of UGC, New Delhi, India, under the SAP and FIST programme of DST, New Delhi, India, for development of research work in the School of Physics, Sambalpur University. Two of the authors, SKS and NKM, acknowledge financial support from UGC through the UGC-BSR fellowship scheme. One of the authors, BB, acknowledges the SERB under the DST Fast Track Scheme for Young Scientists (Project No. SR/FTP/PS-036/2011) New Delhi, India, and PN acknowledges CSIR for sanction of the Emeritus Scientist scheme (Project No. 21(0944)/12/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banarji Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, S.K., Mohanty, N.K., Behera, A.K. et al. Dielectric and Electrical Properties of BiFeO3-PbZrO3 Composites. J. Electron. Mater. 44, 4290–4299 (2015). https://doi.org/10.1007/s11664-015-3944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3944-9

Keywords

Navigation