Skip to main content
Log in

Photovoltaic Properties of CdSe/CdS and CdS/CdSe Core–Shell Particles Synthesized by Use of Uninterrupted Precipitation Procedures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cadmium Selenide (CdSe) and cadmium sulfide (CdS) are good electron acceptors for hybrid solar cells. CdSe and CdS nanoparticles can be prepared at low temperatures (60–80°C) from alkaline aqueous solutions of a cadmium salt, sodium citrate, and thiourea, as sulfur source, or sodium selenosulfate, as selenium source. Under the same experimental conditions, the reaction kinetics for CdS were faster than for CdSe. Formation of CdSe/CdS core–shell particles (type I: CdSe as core and CdS as shell) could be achieved by use of an uninterrupted one-step process by setting high and low solution temperatures for the core and shell compounds, respectively. The yield of the CdSe product was higher at a pH 8.5–9.5 whereas that of the CdS product was higher at higher pH (10–11). Therefore, formation of the “inverse” CdS/CdSe structure (type II: CdS as core and CdSe as shell) was possible in a one-step solution process by choosing a high solution pH for the core and a lower pH for the shell. Photoluminescence spectra and electron micrographs confirmed formation of the two types of core–shell particle. The photovoltaic performance of heterojunctions prepared with core–shell particles and poly(3-hexylthiophene) (P3HT), also suggested formation of core–shell particles. Both the photovoltage and photocurrent density of hybrid solar cells depended on the shell compound and not on the core. It was shown that the interface of the heterojunctions plays is important in solar cell applications, and its modification could be realized by incorporating different shell compounds on core particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.R. Saunders, J. Colloid Interface Sci. 369, 1 (2012).

    Article  Google Scholar 

  2. T. Ni, J. Yan, Y. Jiang, F. Zou, L. Zhang, D. Yang, J. Wei, S. Yang, and B. Zou, J. Mater. Sci. 49, 2571 (2014). doi:10.1007/s10853-013-7953-x.

    Article  Google Scholar 

  3. J.J.M. Halls and R.H. Friend, Organic Photovoltaic Devices, ed. D.M. Archer and R. Hill (London: Imperial College Press, 2001),vol. 1 p. 377.

    Google Scholar 

  4. J.J. Benson-Smith and J. Nelson, Organic donor–acceptor heterojunction solar cells, ed. M.D. Archer and A.J. Nozik (London: Imperial College Press, 2008), p. 453.

    Google Scholar 

  5. M. Wright and A. Uddin, Solar Energy Mater. Solar Cells 107, 87 (2012).

    Article  Google Scholar 

  6. J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23, 1810 (2011).

    Article  Google Scholar 

  7. L. Zhao, X. Pang, R. Adhikary, J.W. Petrich, M. Jeffries-EL, and Z. Lin, Adv. Mater. 23, 2844 (2011).

    Article  Google Scholar 

  8. S. Dayal, M.O. Reese, A.J. Ferguson, D.S. Ginley, G. Rumbles, and N. Kopidakis, Adv. Funct. Mater. 20, 2629 (2010).

    Article  Google Scholar 

  9. M.D. Heinemann, K. von Maydell, F. Zutz, J. Kolny-Olesiak, H. Borchert, I. Riedel, and J. Parisi, Adv. Funct. Mater. 19, 3788 (2009).

    Article  Google Scholar 

  10. B. Sun and N.C. Greenham, Phys. Chem. Chem. Phys. 8, 3557 (2006).

    Article  Google Scholar 

  11. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

    Article  Google Scholar 

  12. L.X. Reynolds, T. Lutz, S. Dowland, A. MacLachlan, S. King, and S.A. Haque, Nanoscale 4, 1561 (2012).

    Article  Google Scholar 

  13. M. Zhong, D. Yang, J. Zhang, J. Shi, X. Wang, and C. Li, Solar Energy Mater. Solar Cells 96, 160 (2012).

    Article  Google Scholar 

  14. S. Dowland, T. Lutz, A. Ward, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, and S.A. Haque, Adv. Mater. 23, 2739 (2011).

    Article  Google Scholar 

  15. S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, and S. Gradečak, Nano Lett. 11, 3998 (2011).

    Article  Google Scholar 

  16. X. Jiang, F. Chen, H. Xu, L. Yang, W. Qiu, M. Shi, M. Wang, and H. Chen, Solar Energy Mater. Solar Cells 94, 338 (2010).

    Article  Google Scholar 

  17. L. Wang, Y.S. Liu, X. Jiang, D.H. Qin, and Y. Cao, Y. J. Phys. Chem. C 111, 9538 (2007).

    Article  Google Scholar 

  18. Y. Zhang and A. Clapp, Sensors 11, 11036 (2011).

    Article  Google Scholar 

  19. V.H. Chu, T.H.L. Nghiem, T.H. Le, D.L. Vu, H.N. Tran, and T.K.L. Vu, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 025017 (2012).

    Article  Google Scholar 

  20. H. Qian, L. Li, and J. Ren, Mater. Res. Bull. 40, 1726 (2005).

    Article  Google Scholar 

  21. D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, and H. Weller, Nano Lett. 3, 1677 (2003).

    Article  Google Scholar 

  22. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang, and J. Shen, Chem. Mater. 11, 3096 (1999).

    Article  Google Scholar 

  23. X. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).

    Article  Google Scholar 

  24. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).

    Article  Google Scholar 

  25. D.-W. Deng, J.-S. Yu, and Y. Pan, J. Colloid Interface Sci. 299, 225 (2006).

    Article  Google Scholar 

  26. E. Arici, D. Meissner, F. Schäffler, and N.S. Sariciftci, Int. J. Photoenergy 5, 199 (2003).

    Article  Google Scholar 

  27. C.S. Coria-Monroy, C. Martínez-Alonso, M. Sotelo-Lerma, J.M. Hernández, and H. Hu, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-2071-3.

    Google Scholar 

  28. P.K. Nair, M.T.S. Nair, O.L. Arenas, Y. Peña, A. Castillo, I.T. Ayala, O. Gomez-Daza, A. Sánchez, J. Campos, H. Hu, R. Súarez, and M. Rincón, Solar Energy Mater. Solar Cells 52, 313 (1998).

    Article  Google Scholar 

  29. H.J. Cortina-Marrero, P.K. Nair, and H. Hu, Solar Energy 98, 196 (2013).

    Article  Google Scholar 

  30. R.C. Kainthla, D.K. Pandya, and K.L. Chopra, J. Electrochem. Soc. 127, 277 (1980).

    Article  Google Scholar 

  31. P.C. Rieke and S.B. Bentjen, Chem. Mater. 5, 43 (1993).

    Article  Google Scholar 

  32. R. Ortega-Borges and D. Lincot, J. Electrochem. Soc. 140, 3464 (1993).

    Article  Google Scholar 

  33. I. Kaur, D.K. Pandya, and K.L. Chopra, J. Electrochem. Soc. 127, 943 (1980).

    Article  Google Scholar 

  34. D.A. Mazón-Montijo, M. Sotelo-Lerma, L. Rodríguez-Fernández, and L. Huerta, Appl. Surf. Sci. 256, 4280 (2010).

    Article  Google Scholar 

  35. P. Rodriguez, N. Muñoz-Aguirre, E. San-Martın, G. Martinez, G. de la Cruz, S.A. Tomas, and O. Zelaya-Angel, J. Cryst. Growth 310, 160 (2008).

    Article  Google Scholar 

  36. R.B. Kale and C.D. Lokhande, Semicond. Sci. Technol. 20, 1 (2005).

    Article  Google Scholar 

  37. H. Cortina, E. Pineda, J. Campos, M.E. Nicho, and H. Hu, Eur. Phys. J. Appl. Phys. 55, 30901 (2011).

    Article  Google Scholar 

  38. M. Grün, W. Langbein, M. Hetterich, and C. Klingshirn, Superlattices Microstruct. 15, 463 (1994).

    Article  Google Scholar 

  39. C. Martínez-Alonso, C.A. Rodríguez-Castañeda, P. Moreno-Romero, C.S. Coria-Monroy, and H. Hu, Int. J. Photoenergy (2014). doi:10.1155/2014/453747.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selene Coria-Monroy, C., Sotelo-Lerma, M., Martínez-Alonso, . et al. Photovoltaic Properties of CdSe/CdS and CdS/CdSe Core–Shell Particles Synthesized by Use of Uninterrupted Precipitation Procedures. J. Electron. Mater. 44, 3302–3311 (2015). https://doi.org/10.1007/s11664-015-3906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3906-2

Keywords

Navigation