Skip to main content
Log in

Evolution of Polarization Vortex Pairs in a Uniaxially Compressed Single-Crystal BaTiO3 Thin Film: From Initiation to Annihilation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the molecular dynamics method based on the shell model, a uniaxially compressed single-crystal BaTiO3 thin film with initial polarization configuration of double 90° domains has been simulated. Initiation and vertical propagation of domain switching induced by displacement loading lead to the occurrence of vortices and antivortices in pairs. However, further transverse extension results in separation between vortices and their corresponding antivortices of the same pair and the approach between vortices and antivortices of different pairs. As a result, a complete evolution process of the vortices and antivortices from initiation, to motion, then to collision, and finally to annihilation is observed. The internal mechanism of vortex– antivortex pair evolution is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, J. Phys. 18, R361 (2006).

    Google Scholar 

  2. I.I. Naumov, L. Bellaiche, and H.X. Fu, Nature 432, 737 (2004).

    Article  Google Scholar 

  3. J.F. Scott, Science 315, 954 (2007).

    Article  Google Scholar 

  4. M.J. Polking, M.G. Han, A. Yourdkhani, V. Petkov, C.F. Kisielowski, V.V. Volkov, Y. Zhu, G. Caruntu, A.P. Alivisatos, and R. Ramesh, Nat. Mater. 11, 700 (2012).

    Article  Google Scholar 

  5. L.W. Chang, V. Nagarajan, J.F. Scott, and J.M. Gregg, Nano Lett. 13, 2553 (2013).

    Article  Google Scholar 

  6. G. Catalan, A. Lubk, A.H. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D.H. Blank, and B. Noheda, Nat. Mater. 10, 963 (2011).

    Article  Google Scholar 

  7. A. Gruverman, D. Wu, H.J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, and J.F. Scott, J. Phys. 20, 342201 (2008).

    Google Scholar 

  8. S. Prosandeev, I. Ponomareva, I. Naumov, I. Kornev, and L. Bellaiche, J. Phys. 20, 193201 (2008).

    Google Scholar 

  9. C.L. Jia, K.W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu, Science 331, 1420 (2011).

    Article  Google Scholar 

  10. R.G.P. McQuaid, L.J. McGilly, P. Sharma, A. Gruverman, and J.M. Gregg, Nat. Commun. 2, 404 (2011).

    Article  Google Scholar 

  11. J. Slutsker, A. Artemev, and A. Roytburd, Phys. Rev. Lett. 100, 087602 (2008).

    Article  Google Scholar 

  12. I. Naumov and H. Fu, Phys. Rev. Lett. 98, 077603 (2007).

    Article  Google Scholar 

  13. X.B. Tian, X.H. Yang, and W.Z. Cao, J. Electron. Mater. 42, 2504 (2013).

    Article  Google Scholar 

  14. X.B. Tian, X.H. Yang, W.Z. Cao, and P. Wang, Appl. Phys. Lett. 103, 242905 (2013).

    Article  Google Scholar 

  15. R.G.P. McQuaid, M. McMillen, L.W. Chang, A. Gruverman, and J.M. Gregg, J. Phys. 24, 024204 (2012).

    Google Scholar 

  16. M. Sepliarsky, A. Asthagiri, S.R. Phillpot, M.G. Stachiotti, and R.L. Migoni, Curr. Opin. Solid State Mater. Sci. 9, 107 (2005).

    Article  Google Scholar 

  17. Y.H. Zhang, J.W. Hong, B. Liu, and D.N. Fang, Nanotechnology 21, 015701 (2010).

    Article  Google Scholar 

  18. M.G. Stachiotti and M. Sepliarsky, Phys. Rev. Lett. 106, 137601 (2011).

    Article  Google Scholar 

  19. S. Tinte, M.G. Stachiotti, M. Sepliarsky, R.L. Migoni, and C.O. Rodriguez, J. Phys. 11, 9679 (1999).

    Google Scholar 

  20. Y.L. Sang, B. Liu, and D.N. Fang, Comput. Mater. Sci. 44, 404 (2008).

    Article  Google Scholar 

  21. G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott, Rev. Mod. Phys. 84, 119 (2012).

    Article  Google Scholar 

  22. J.M. Hu, T.N. Yang, L.Q. Chen, and C.W. Nan, J. Appl. Phys. 114, 164303 (2013).

    Article  Google Scholar 

  23. G. Catalan, D. Jiménez, and A. Gruverman, Nat. Mater. 14, 137 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

We thank the National Natural Science Foundation of China (No. 11072082) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Bao Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X.B., Yang, X.H. & Wang, P. Evolution of Polarization Vortex Pairs in a Uniaxially Compressed Single-Crystal BaTiO3 Thin Film: From Initiation to Annihilation. J. Electron. Mater. 44, 3795–3800 (2015). https://doi.org/10.1007/s11664-015-3850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3850-1

Keywords

Navigation