Skip to main content
Log in

Performance Prediction of Commercial Thermoelectric Cooler Modules using the Effective Material Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work examines the validity of formulating the effective thermoelectric material properties as a way to predict thermoelectric module performance. The three maximum parameters (temperature difference, current, and cooling power) of a thermoelectric cooler were formulated on the basis of the hot junction temperature. Then, the effective material properties (Seebeck coefficient, electrical resistance, and thermal conductivity) were defined in terms of the three maximum parameters that were taken from either a commercial thermoelectric cooler module or the measurements. It is demonstrated that the simple standard equation with the effective material properties predicts well the performance curves of the four selected commercial products. Normalized parameters over the maximum parameters were also formulated to present the characteristics of the thermoelectric coolers along with the normalized charts. The normalized charts would be universal for a given thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(A\) :

Cross-sectional area of thermoelement (m2)

\({\rm COP}\) :

Coefficient of performance (dimensionless)

\( I \) :

Electric current (A)

\( I_{\rm{max} } \) :

Maximum current (A)

\( \vec{j} \) :

Electric current density vector (A/m2)

\( K \) :

Thermal conductance (W/K)

\( L \) :

Length of thermoelement (m)

\( k \) :

Thermal conductivity (W/m-K)

\( n \) :

Number of thermocouples

\( \vec{q} \) :

Heat flux vector (W/m2)

\( \dot{Q}_{\rm{c}} \) :

Cooling power, heat absorbed at cold junction (W)

\( \dot{Q}_{\rm{h}} \) :

Heat liberated at hot junction (W)

\( \dot{Q}_{\rm{c\;max} } \) :

Maximum cooling power (W)

\( R \) :

Electrical resistance (Ω)

\( T \) :

Temperature (°C)

\( T_{\rm{c}} \) :

Low junction temperature (°C)

\( T_{\rm{h}} \) :

High junction temperature (°C)

\( \bar{T} \) :

Average temperature \( {{\left( {T_{\rm{h}} + T_{\rm{c}} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{\rm{h}} + T_{\rm{c} }} \right)} 2}} \right. \kern-0pt} 2} \) (°C)

\( V \) :

Voltage of a module (V)

\( V_{\rm{max} } \) :

Maximum voltage (V)

\( \dot{W} \) :

Work per unit time \( \dot{W} = \alpha I\Delta T + I^{2} R \) (W)

\( x \) :

Distance of thermoelement leg (m)

\( Z \) :

Figure of merit (K−1), \( Z = {{\alpha^{2} } \mathord{\left/ {\vphantom {{\alpha^{2} } {\rho k}}} \right. \kern-0pt} {\rho k}} \)

\( \Delta T \) :

Temperature difference \( T_{\rm{h}} - T_{\rm{c}} \) (°C),

\( \Delta T_{\rm{max} } \) :

Maximum temperature difference (°C)

α :

Seebeck coefficient (V/K)

ρ :

Electrical resistivity (Ω cm)

\( \vec{\nabla } \) :

Gradient operator vector

p :

p-Type element

n :

n-Type element

* :

Effective quantity

References

  1. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London, UK: Infoserch Limited, 1957).

  2. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press, 1995).

    Book  Google Scholar 

  3. H.J. Goldsmid, Introduction to Thermoelectricity. (Heidelberg: Springer, 2010).

  4. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectics: Basic Principles and New Materials Developments (Heidelberg: Springer, 2001).

  5. H. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells (Hoboken, NJ: John Wiley & Sons, 2010)

  6. C.Y. Du and C.D. Wen, Int. J. Heat Mass Transf. 54, 4875 (2011).

    Article  Google Scholar 

  7. R. Palacios, A. Arenas, R.R. Pecharroman, and F.L. Pagola, Appl. Therm. Eng. 29, 3501 (2009).

    Article  Google Scholar 

  8. S.A. Omer and D.G. Infield, Sol. Energy Mater. Sol. Cells 53, 67 (1998).

    Article  Google Scholar 

  9. M.J. Huang, R.H. Yen, and A.B. Wang, Int. J. Heat Mass Transf. 48, 413 (2005).

    Article  Google Scholar 

  10. H. Lee, Energy 56, 61 (2013).

    Article  Google Scholar 

  11. G. Min, D.M. Rowe, O. Assis, and S.G.K. Williams, Proceedings of the International Conference on Thermoelectronics (1992), pp. 210–212.

  12. B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23, 208 (2000).

    Article  Google Scholar 

  13. S. Lineykin and S. Ben-Yaakov, IEEE Trans. Ind. Appl. 43, 505 (2007).

    Article  Google Scholar 

  14. Z, Luo, Electronics Cooling Magazine, 14, 22 (2008).

  15. H.Y. Zhang, Int. J. Refrig. 33, 1187 (2010).

    Article  Google Scholar 

  16. R. Simons, Electron. Cooling Mag. 16, 4 (2010).

    Google Scholar 

  17. F.L. Tan and S.C. Fok, Energy Convers. Manag. 49, 1715 (2008).

    Article  Google Scholar 

  18. R. Ahiska and K. Ahiska, Energy Convers. Manag. 51, 338 (2010).

    Article  Google Scholar 

  19. H. Leeb, Appl. Energy 106, 79 (2013).

    Article  Google Scholar 

  20. R.J. Buist, 15th International Energy Conversion Engineering Conference, Seattle, Washington (1980), pp. 18–22.

  21. K. Uemura, International Conference on Thermoelectrics, Barbrow, Cardiff, UK, Ch. 12 (1991), pp. 69–73.

  22. A. Attar, H. Lee, and S. Weera, J. Electron. Mater. 43, 2179 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HoSung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Attar, A.M. & Weera, S.L. Performance Prediction of Commercial Thermoelectric Cooler Modules using the Effective Material Properties. J. Electron. Mater. 44, 2157–2165 (2015). https://doi.org/10.1007/s11664-015-3723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3723-7

Keywords

Navigation