Skip to main content
Log in

Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Pt-Te and the Pt-Sb-Te systems are modeled using the calculation of phase diagram (CALPHAD) technique. In the Pt-Te system, the liquid phase is modeled as (Pt, PtTe2, Te) using the associate model, and four intermediates, PtTe2, Pt2Te3, Pt3Te4 and PtTe, are treated as stoichiometric compounds and their enthalpies of formation are obtained by means of first-principles calculations. The solution phases, fcc(Pt) and hex(Te), are described as substitutional solutions. Combined with the thermodynamic models of the liquid phase in the Pt-Sb and Sb-Te systems in the literature, the liquid phase of the Pt-Sb-Te ternary system is modeled as (Pt, Sb, Te, Sb2Te3, PtTe2) also using the associate model. The compounds, PtTe2, Pt2Te3, Pt3Te4 and PtTe in the Pt-Te system and PtSb2, PtSb, Pt3Sb2 and Pt7Sb in the Pt-Sb system are treated as line compounds Pt m (Sb,Te) n in the Pt-Sb-Te system, and the compound Pt5Sb is treated as (Pt,Sb)5(Pt,Sb,Te). A set of self-consistent thermodynamic parameters is obtained. Using these thermodynamic parameters, the experimental Pt-Te phase diagram, the experimental heat capacities of PtTe and PtTe2, the enthalpies of formation from first-principles calculations for PtTe2, Pt2Te3, Pt3Te4, and PtTe, and the ternary isothermal sections at 873 K, 923 K, 1073 K and 1273 K are well reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, W. Zhu, X. Gao, S. Bao, X. Fan, X. Duan, and J. Hou, J. Phys. Chem. B 110, 4599 (2006).

    Article  Google Scholar 

  2. L.J. Cabri, Platinum-Group Elements: Mineralogy, Geology, Recovery (Washington, DC: Geology Division of CIM, 1981).

    Google Scholar 

  3. W.-S. Kim, J. Alloys Compd. 252, 166 (1997).

    Article  Google Scholar 

  4. M.L. Gimpl, C.E. Nelson, and N. Fuschillo, Trans. Am. Soc. Metals 56, 209 (1963).

    Google Scholar 

  5. Y.C. Bhan, T. Godecke, and K. Schubert, J. Less-Common Metals 19, 121 (1969).

    Article  Google Scholar 

  6. W.-S. Kim, Met. Mater. 2, 9 (1996).

    Article  Google Scholar 

  7. V.K. Karzhavin, Geochem. Int. 45, 931 (2007).

    Article  Google Scholar 

  8. F. Grønvold, T. ThurmannMoe, E.F. Westrum Jr, and E. Chang, J. Chem. Phys. 35, 1665 (1961).

    Article  Google Scholar 

  9. E.F. Westrum Jr, H.J. Carlson, F. Grønvold, and A. Kjekshus, J. Chem. Phys. 35, 1670 (1961).

    Article  Google Scholar 

  10. G. Ghosh, H.L. Lukas, and L. Delaey, Z. Metallkd. 80, 731 (1989).

    Google Scholar 

  11. C. Guo, C. Li, and Z. Du, J. Electron. Mater. 43, 4082 (2014).

    Article  Google Scholar 

  12. J. Liu, Y. Zhang, and C. Guo, Int. J. Nonferrous Metall. 2, 95 (2013).

    Article  Google Scholar 

  13. C. Guo, C. Li, and Z. Du, Int. J. Mater. Res. 105, 525 (2014).

    Article  Google Scholar 

  14. M. El-Boragy and K. Schubert, Z. Metallkd. 62, 667 (1971).

    Google Scholar 

  15. W.-S. Kim and G.Y. Chao, Can. Mineral. 28, 675 (1990).

    Google Scholar 

  16. W.-S. Kim, J. Alloys Compd. 284, 218 (1999).

    Article  Google Scholar 

  17. W.-S. Kim, J. Alloys Compd. 407, 235 (2006).

    Article  Google Scholar 

  18. http://www.thermocalc.com/resources, SGTE pure elements (unary) database, Version 5.1 (2010).

  19. M. Hillert and L.I. Staffansson, Acta Chem. Scand. 24, 3618 (1970).

    Article  Google Scholar 

  20. B. Sundman and J. Ǻgren, J. Phys. Chem. Solids 42, 297 (1981).

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  22. Y. Ohmasa, I. Yamamoto, M. Yao, and H. Endo, J. Phys. Soc. Jpn. 64, 4766 (1995).

    Article  Google Scholar 

  23. C. Soulard, P.E. Petit, P. Deniard, M. Evain, S. Jobic, M.H. Whangbo, and A.C. Dhaussy, J. Solid State Chem. 178, 2008 (2005).

    Article  Google Scholar 

  24. J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, and B. Sundman, Calphad 9, 273 (2002).

    Article  Google Scholar 

  25. Y.M. Muggianu, M. Gambino, and J.-P. Bros, J. Chim. Phys. 72, 83 (1975).

    Google Scholar 

  26. C. Guo, C. Li, P.J. Masset, and Z. Du, Calphad 36, 100 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 51371029 and 51171017) and the National High Technology Research and Development Program of China (Grant No. 2013AA031601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Huang, L., Li, C. et al. Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems. J. Electron. Mater. 44, 2638–2650 (2015). https://doi.org/10.1007/s11664-015-3676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3676-x

Keywords

Navigation