Skip to main content
Log in

Simulation and Design of Vehicle Exhaust Power Generation Systems: The Interaction Between the Heat Exchanger and the Thermoelectric Modules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Vehicle exhaust power generation systems (VEPGS), mainly consisting of a heat exchanger, cooling system, thermoelectric modules (TEMs), and clamping device, have attracted wide interest and attention for power generation from waste heat. In this work, systematical research was conducted to investigate the thermal performance, power output, and thermal stress of a VEPGS by using the multifield coupling method. Different from previous research, this work simulates a model that integrates the heat exchanger and TEMs, focusing on the effect of the TEMs on the thermal performance of the heat exchanger. It is found that the TEMs have a significant effect on the thermal performance of the heat exchanger. When not considering the effects of the TEMs, the hot-end temperature of the TEMs would be seriously underestimated, which would result in underestimation of the power output of the VEPGS and the level of thermal stress of the TEMs. Meanwhile, when considering the effect of the TEMs, the hot-end temperature distribution exhibits significant changes, and its temperature uniformity is significantly improved. The results suggest that, in VEPGS design and optimization, the interaction between the heat exchanger and TEMs should be considered. This study also contributes to a more accurate assessment method for VEPGS design and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Y. Hsiao, W.C. Chang, and S.L. Chen, Energy 35, 1447 (2010).

    Article  Google Scholar 

  2. K. Salzgeber, P. Prenninger, and A. Grytsiv, et al., J. Electron. Mater. 39, 2074 (2010).

    Article  Google Scholar 

  3. C. Hadjistassou, E. Kyriakides, and J. Georgiou, Energy Convers. Manag. 66, 165 (2013).

    Article  Google Scholar 

  4. H.H. Saber and M.S. El-Genk, Energy Convers. Manag. 48, 1383 (2007).

    Article  Google Scholar 

  5. S. Butt, Y.Y. Ren, and M.U. Farooq, et al., Energy Convers. Manag. 83, 35 (2014).

    Article  Google Scholar 

  6. B.V.K. Reddy, M. Barry, J. Li, and M.K. Chyu, Energy Convers. Manag. 77, 458 (2014).

    Article  Google Scholar 

  7. A.Z. Sahin and B.S. Yilbas, Energy Convers. Manag. 65, 26 (2013).

    Article  Google Scholar 

  8. S.Y. Zhou, B.G. Sammakia, B. White, and P. Borgesen, Int. J. Heat Mass Transf. 62, 435 (2013).

    Article  Google Scholar 

  9. W.H. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Energy 45, 874 (2012).

    Article  Google Scholar 

  10. S. Bélanger and L. Gosselin, Energy Convers. Manag. 52, 2911 (2011).

    Article  Google Scholar 

  11. T.H. Han, G.C. Gong, and Z.B. Liu, et al., Appl. Therm. Eng. 67, 529 (2014).

    Article  Google Scholar 

  12. A. Attar, H. Lee, and S. Weera, J. Electron. Mater. 43, 2179 (2014).

    Article  Google Scholar 

  13. A. Rezania, K. Yazawa, and L.A. Rosendah, et al., Int. J. Therm. Sci. 72, 73 (2013).

    Article  Google Scholar 

  14. A. Fakheri, Int. J. Heat Mass Transf. 76, 99 (2014).

    Article  Google Scholar 

  15. X. Liu, C.G. Yu, and S. Chen, et al., J. Electron. Mater. 43, 2218 (2014).

    Article  Google Scholar 

  16. C.Q. Su, W.S. Wang, X. Liu, and Y.D. Deng, Case Stud. Therm. Eng. 4, 85 (2014).

    Article  Google Scholar 

  17. J.L. Gao, Q.G. Du, and X.D. Zhang, et al., J. Electron. Mater. 40, 884 (2011).

    Article  Google Scholar 

  18. B. Duan, P.C. Zhai, L.S. Liu, and Q.J. Zhang, Mater. Res. Bull. 47, 1670 (2012).

    Article  Google Scholar 

  19. A.S. Al-Merbati, B.S. Yilbas, and A.Z. Sahin, Appl. Therm. Eng. 50, 683 (2013).

    Article  Google Scholar 

  20. G. Chen, Y. Mu, and P.C. Zhai, et al., J. Electron. Mater. 42, 1762 (2013).

    Article  Google Scholar 

  21. E.E. Antonova and D.C. Looman, in International Conference on Thermoelectrics, 2005, p. 200

  22. S. Turenne, T.H. Clin, D. Vasilevskiy, and R.A. Masut, J.␣Electron. Mater. 39, 1926 (2010).

    Article  Google Scholar 

  23. X. Gao, S.J. Andreasen, and M. Chen, et al., Int. J. Hydrog. Energy 37, 8490 (2012).

    Article  Google Scholar 

  24. X.H. Yuan, Q. Sun, and X.J. Hou, et al., Appl. Mech. Mater. 190, 688 (2012).

    Article  Google Scholar 

  25. M. Ma and J.L. Yu, Int J. Heat Mass Transf. 72, 234 (2014).

    Article  Google Scholar 

  26. X.L. Gou, H. Xiao, and S.W. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Program on Key Basic Research Project (973 Program, No. 2013CB632505), National Natural Science Foundation of China (Grant No. 51272198), the Fundamental Research Funds for the Central Universities (No. 2014-IA-022), and the International Science & Technology Cooperation Program of China (No. 2011DFB60150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Chen, G., Mu, Y. et al. Simulation and Design of Vehicle Exhaust Power Generation Systems: The Interaction Between the Heat Exchanger and the Thermoelectric Modules. J. Electron. Mater. 44, 1822–1833 (2015). https://doi.org/10.1007/s11664-014-3568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3568-5

Keywords

Navigation