Skip to main content
Log in

Effects of Crystal Growth Methods on Deep-Level Defects and Electrical Properties of CdZnTe:In Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Deep-level defects in CdZnTe:In (CZT) crystals grown by the modified vertical Bridgman (MVB) method and the traveling heater method (THM) were comparatively studied by thermally stimulated current (TSC) measurements. The trap density of Cd vacancy-related acceptor defects is found to be lower in THM-grown crystals compared with crystals grown by the MVB method, since the relatively low growth temperature of the THM will greatly reduce the loss of Cd and decrease the generation of Cd vacancies. Tellurium antisite-related deep donors are dominant in MVB-grown CZT, and Te interstitial-related deep acceptors are dominant in THM-grown CZT crystals grown by the Te-rich solution technique. The compensation of donor and acceptor defects leads to a low concentration of net free electrons in n-type MVB-grown CZT and a relatively high concentration of net free holes in p-type THM-grown CZT. The Fermi level in MVB-grown CZT is positioned below the conduction band by the antisite-related deep donor, while that in THM-grown CZT is positioned above the valence band by the interstitial-related deep acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fiederle, T. Feltgen, J. Meinhardt, M. Rogalla, and K. Benz, J. Cryst. Growth 197, 635 (1999).

    Article  Google Scholar 

  2. T. Schlesinger, J. Toney, H. Yoon, E. Lee, B. Brunett, L. Franks, and R. James, Mater. Sci. Eng. 32, 103 (2001).

    Article  Google Scholar 

  3. C. Szeles, IEEE Trans. Nucl. Sci. 51, 1242 (2004).

    Article  Google Scholar 

  4. P. Capper, J. Harris, E. O’Keefe, C. Jones, C. Ard, P. Mackett, and D. Dutton, Mater. Sci. Eng. B 16, 29 (1993).

    Article  Google Scholar 

  5. P. Rudolph and M. Mühlberg, Mater. Sci. Eng. B 16, 8 (1993).

    Article  Google Scholar 

  6. E. Saucedo, P. Rudolph, and E. Dieguez, J. Cryst. Growth 310, 2067 (2008).

    Article  Google Scholar 

  7. P. Capper, J. Harris, E. O’Keefe, C. Jones, and I. Gale, Adv. Mater. Opt. Electron. 5, 101 (1995).

    Article  Google Scholar 

  8. T. Wang, W.-Q. Jie, Y.-D. Xu, G.-Q. Zha, and L. Fu, Trans. Nonferr. Met. Soc. China 19, s622 (2009).

    Article  Google Scholar 

  9. R. Triboulet, K. Van Pham, and G. Didier, J. Cryst. Growth 101, 216 (1990).

    Article  Google Scholar 

  10. R. Triboulet, J. Alloys Compd. 371, 67 (2004).

    Article  Google Scholar 

  11. U. Roy, A. Burger, and R. James, J. Cryst. Growth 379, 57 (2013).

    Article  Google Scholar 

  12. H. Chen, S. Awadalla, K. Iniewski, P. Lu, F. Harris, J. Mackenzie, T. Hasanen, W. Chen, R. Redden, and G. Bindley, J. Appl. Phys. 103, 014903 (2008).

    Article  Google Scholar 

  13. U.N. Roy, S. Weiler, J. Stein, M. Groza, V. Buliga, and A. Burger, IEEE Trans. Nucl. Sci. 58, 1949 (2011).

    Article  Google Scholar 

  14. H. Chen, S.A. Awadalla, F. Harris, P. Lu, R. Redden, G. Bindley, A. Copete, J. Hong, J. Grindlay, and M. Amman, IEEE Trans. Nucl. Sci. 55, 1567 (2008).

    Article  Google Scholar 

  15. C. Szeles, S.E. Cameron, J.-O. Ndap, and W.C. Chalmers, IEEE Trans. Nucl. Sci. 49, 2535–2540 (2002).

    Article  Google Scholar 

  16. L.Y. Xu, W.Q. Jie, G.Q. Zha, T. Feng, N. Wang, S.Z. Xi, X. Fu, W.L. Zhang, Y.D. Xu, and T. Wang, Appl. Phys. Lett. 104, 232109 (2014).

    Article  Google Scholar 

  17. Z.Q. Fang, D.C. Look, and J. Zhao, Appl. Phys. Lett. 61, 589 (1992).

    Article  Google Scholar 

  18. M. Pavlović and U. Desnica, J. Appl. Phys. 84, 2018 (1998).

    Article  Google Scholar 

  19. N. Krsmanovic, K. Lynn, M. Weber, R. Tjossem, T. Gessmann, C. Szeles, E. Eissler, J. Flint, and H. Glass, Phys. Rev. B 62, R16279 (2000).

    Article  Google Scholar 

  20. J. Francou, K. Saminadayar, and J. Pautrat, Phys. Rev. B 41, 12035 (1990).

    Article  Google Scholar 

  21. S.-H. Wei and S. Zhang, Phys. Rev. B 66, 155211 (2002).

    Article  Google Scholar 

  22. A. Carvalho, A. Tagantsev, S. Öberg, P. Briddon, and N. Setter, Phys. Rev. B 81, 075215 (2010).

    Article  Google Scholar 

  23. T. Wang, W.Q. Jie, D.M. Zeng, G. Yang, Y.D. Xu, W.H. Liu, and J.J. Zhang, J. Mater. Res. 23, 1389 (2008).

    Article  Google Scholar 

  24. M. Berding, Phys. Rev. B 60, 8943 (1999).

    Article  Google Scholar 

  25. M. Chu, S. Terterian, D. Ting, C. Wang, H. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).

    Article  Google Scholar 

  26. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, Phys. Rev. B 56, 14897 (1997).

    Article  Google Scholar 

  27. V. Babentsov, J. Franc, P. Hoeschl, M. Fiederle, K. Benz, N. Sochinskii, E. Dieguez, and R. James, Cryst. Res. Technol. 44, 1054 (2009).

    Article  Google Scholar 

  28. A. Cola and I. Farella, Appl. Phys. Lett. 94, 102113 (2009).

    Article  Google Scholar 

  29. H. Elhadidy, V. Dedic, J. Franc, and R. Grill, J. Phys. D 47, 055104 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Fund of National Key Scientific Instruments and Equipments Development (2011YQ040082), the National 973 Project of China (2011CB610400), the 111 Project of China (B08040), the National Natural Science Foundation of China (NNSFC-61274081, 51372205), the Doctorate Foundation of Northwestern Polytechnical University (CX201102), and Ministry of Education Fund for Doctoral Students Newcomer Awards of China. The authors would like to give special thanks to Dr. Nianxia Cao at Syracuse University for great help during paper writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanqi Jie or Gangqiang Zha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Jie, W., Zhou, B. et al. Effects of Crystal Growth Methods on Deep-Level Defects and Electrical Properties of CdZnTe:In Crystals. J. Electron. Mater. 44, 518–523 (2015). https://doi.org/10.1007/s11664-014-3452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3452-3

Keywords

Navigation