Skip to main content
Log in

Thermoelectric Properties and Performance of n-Type and p-Type Graphite Intercalation Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

n-Type alkali metal-graphite intercalation compounds (GICs) and p-type metal chloride-GICs were prepared from commercially available graphite sheets, namely PGS® and GRAFOIL®. Their thermoelectric properties, electrical conductivity, thermal conductivity, and Seebeck coefficient were measured, and their thermoelectric performance was estimated in terms of the figure of merit and power factor. The electrical conductivity (103 S cm−1 to 104 S cm−1) and thermal conductivity (40 W m−1 K−1 to 200 W m−1 K−1) of these GICs are much higher than those of other, conventional thermoelectric materials, whereas their absolute Seebeck coefficients (±30 μV K−1) are lower. Therefore, although the figures of merit of the GICs are somewhat lower (∼105 K−1) than those of other thermoelectric materials, their power factors (∼103 W m−1 K−2) are sufficiently high. The thermoelectric properties of these GICs mainly depend on the host graphite type and slightly on the intercalated species. However, the Seebeck coefficient is independent of both, and the thermoelectric performance of the GICs is strongly governed by their high electrical conductivity. The power factors of almost all the GICs prepared from PGS were greater than 10−3 W m−1 K−2, which is a critical threshold value for use of thermoelectric materials in practical applications. Furthermore, the dilute K-GIC with stage-7 structure had a large Seebeck coefficient (−58 μV Κ−1), which improved the power factor to more than 10−2 W m−1 K−2. Considering the advantages of GICs, this study confirms their significant potential as thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Matsumoto, Y. Hoshina, and N. Akuzawa, Mater. Trans. 50, 1607 (2009).

    Article  Google Scholar 

  2. J. Hone, I. Ellwood, M. Muno, A. Mizel, M.L. Cohen, A. Zettl, A.G. Rinzler, and R.E. Smalley, Phys. Rev. Lett. 80, 1042 (1998).

    Article  Google Scholar 

  3. C. Yu, S. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).

    Article  Google Scholar 

  4. V.H. Guerrero and D.D.L. Chung, Compos. Interfaces 9, 395 (2002).

    Article  Google Scholar 

  5. L.C.F. Blackman, J.F. Mathews, and A.R. Ubbelohde, Proc. R. Soc. Lond. A 25, 339 (1960).

    Article  Google Scholar 

  6. J. Heremans, J.P. Issi, I. Zabala-Martinez, M. Shayegan, and M.S. Dresselhaus, Phys. Lett. A 84, 387 (1981).

    Article  Google Scholar 

  7. J. Boxus, B. Poulaert, J.P. Issi, H. Mazurek, and M.S. Dresselhaus, Solid State Commun. 38, 1117 (1981).

    Article  Google Scholar 

  8. J.P. Issi, B. Poulaert, J. Heremans, and M.S. Dresselhaus, Solid State Commun. 44, 449 (1982).

    Article  Google Scholar 

  9. M. Elzinga, D.T. Morelli, and C. Uher, Phys. Rev. B 26, 3312 (1982).

    Article  Google Scholar 

  10. J.P. Issi, J. Heremans, and M.S. Dresselhaus, Phys. Rev. B 27, 1333 (1983).

    Article  Google Scholar 

  11. L. Piraux, J.P. Issi, and P.C. Eklund, Solid State Commun. 56, 413 (1985).

    Article  Google Scholar 

  12. L. Piraux, B. Nysten, J.P. Issi, J.F. Marêché, and E. McRae, Solid State Commun. 55, 517 (1985).

    Article  Google Scholar 

  13. M. Kinany-Alaoui, L. Piraux, J.P. Issi, P. Pernot, and R. Vangelisti, Solid State Commun. 68, 1065 (1988).

    Article  Google Scholar 

  14. L. Piraux, M. Kinany-Alaoui, J.P. Issi, A. Perignon, P. Pernot, and R. Vangelisti, Phys. Rev. B 38, 4329 (1988).

    Article  Google Scholar 

  15. L. Piraux, J.P. Issi, J.F. Marêché, and E. McRae, Synth. Met. 30, 245 (1989).

    Article  Google Scholar 

  16. L. Piraux, V. Bayot, J.P. Issi, M.S. Dresselhaus, M. Endo, and T. Nakajima, Phys. Rev. B 41, 4961 (1990).

    Article  Google Scholar 

  17. L. Piraux, K. Amine, V. Bayot, J.P. Issi, A. Tressaud, and H. Fujimoto, Solid State Commun. 82, 371 (1992).

    Article  Google Scholar 

  18. C. Uher and D.T. Morelli, Synth. Met. 12, 91 (1985).

    Article  Google Scholar 

  19. R. Matsumoto, N. Akuzawa, and Y. Takahashi, Mater. Trans. 47, 1458 (2006).

    Article  Google Scholar 

  20. R. Matsumoto, M. Arakawa, H. Yoshida, and N. Akuzawa, Synth. Met. 162, 2149 (2012).

    Article  Google Scholar 

  21. M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).

    Article  Google Scholar 

  22. M. Ohira, T. Terai, and Y. Takahashi, TANSO 1986, 45 (1986).

    Article  Google Scholar 

  23. M. Inagaki and J. Mittal, Synth. Met. 99, 79 (1999).

    Article  Google Scholar 

  24. O. Takahashi, Y. Iye, and S. Tanuma, Solid State Commun. 37, 863 (1981).

    Article  Google Scholar 

  25. M. Ohira (Ph.D. thesis, Hokkaido University, Japan 1992, in Japanese).

  26. Y. Gotoh, K. Tamada, N. Akuzawa, M. Fujishige, K. Takeuchi, M. Endo, R. Matsumoto, Y. Soneda, and T. Takeichi, J. Phys. Chem. Solids 74, 1482 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rika Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, R., Okabe, Y. & Akuzawa, N. Thermoelectric Properties and Performance of n-Type and p-Type Graphite Intercalation Compounds. J. Electron. Mater. 44, 399–406 (2015). https://doi.org/10.1007/s11664-014-3409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3409-6

Keywords

Navigation