Skip to main content

Advertisement

Log in

Crystallization and Properties of Strontium Barium Niobate-Based Glass–Ceramics for Energy-Storage Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The crystallization kinetics, phase development, and electric properties of Al2O3–SiO2–SrO–BaO–Nb2O5–ZnO glass–ceramics were investigated for potential application of the materials for energy storage. Strontium barium niobate (Ba x Sr1−x Nb2O6) with the tetragonal tungsten-bronze structure was the major crystalline phase formed by both surface and bulk crystallization. The presence of ZnO made the glasses less stable, and thus promoted their crystallization, but had no significant effect on the microstructure of the resulting glass–ceramics. All glass–ceramic samples had a uniform microstructure, with a crystal size of approximately 50 nm. Optimized energy storage density of approximately 6.0 J/cm3 was achieved for the sample containing 0.5% ZnO; the average dielectric constant was 150–180 and the breakdown strength was 950–870 kV/cm over the temperature range 850–950°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Casasola, J.M. Rincón, and M. Romero, J. Mater. Sci. 47, 553 (2012).

    Article  Google Scholar 

  2. N. Fletcher, A. Hilton, and B. Ricketts, J. Phys. D: Appl. Phys. 29, 253 (1996).

  3. E.P. Gorzkowski, M.J. Pan, B. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).

    Article  Google Scholar 

  4. K.M. Slenes, P. Winsor, T. Scholz, and M. Hudis, IEEE Trans. Magn 37, 324 (2001).

    Article  Google Scholar 

  5. A. Herczog, J. Am. Ceram. Soc. 47, 107 (1964).

    Article  Google Scholar 

  6. D. McCauley, R.E. Newnham, and C.A. Randall, J. Am. Ceram. Soc. 81, 979 (1998).

    Article  Google Scholar 

  7. D. Grossman and J. Isard, J. Phys. D: Appl. Phys. 3, 1058 (1970).

  8. T. Kokubo and M. Tashiro, J. Non-Cryst. Solids 13, 328 (1974).

    Article  Google Scholar 

  9. S. Lynch and J. Shelby, J. Am. Ceram. Soc. 67, 424 (1984).

    Article  Google Scholar 

  10. O. Parkash, D. Kumar, and R. Rajgopalan, Bull. Mater. Sci 8, 13 (1986).

    Article  Google Scholar 

  11. A. Herczog, J. Am. Ceram. Soc. 73, 2743 (1990).

    Article  Google Scholar 

  12. J. Du, B. Jones, and M. Lanagan, Mater. Lett. 59, 2821 (2005).

    Article  Google Scholar 

  13. J.-J. Shyu and J.-R. Wang, J. Am. Ceram. Soc. 83, 3135 (2000).

    Article  Google Scholar 

  14. E.P. Gorzkowski, M.J. Pan, B.A. Bender, and C. Wu, J. Am. Ceram. Soc. 91, 1065 (2008).

    Article  Google Scholar 

  15. G.-H. Chen, W.-J. Zhang, X.-Y. Liu, and C.-R. Zhou, J. Electroceram. 27, 78 (2011).

    Article  Google Scholar 

  16. Y.-Q. Qu, A.-D. Li, Q.-Y. Shao, Y.-F. Tang, D. Wu, C.L. Mak, K.H. Wong, and N.-B. Ming, Mater. Res. Bull. 37, 503 (2002).

    Article  Google Scholar 

  17. J.-J. Shyu and C.-H. Chen, Ceram. Int. 29, 447 (2003).

    Article  Google Scholar 

  18. N.M. Shash and I.S. Ahmed, Mater. Chem. Phys. 137, 734 (2013).

    Article  Google Scholar 

  19. M. Busio and O. Steigelmann, Glass Sci. Technol. 73, 319 (2000).

    Google Scholar 

  20. H. Masai, T. Toda, T. Ueno, Y. Takahashi, and T. Fujiwara, Appl. Phys. Lett. 94, 3 (2009).

    Google Scholar 

  21. J.M. Rincón, Polym-Plast. Technol. 31, 309 (1992).

    Article  Google Scholar 

  22. H.L.J. Zhonghong, J. Chin. Ceram Soc. 4, 004 (1990).

    Google Scholar 

  23. S. Yilmaz, O.T. Özkan, and V. Günay, Ceram. Int. 22, 477 (1996).

    Article  Google Scholar 

  24. C.-T. Cheng, M. Lanagan, J.-T. Lin, B. Jones, and M.-J. Pan, J. Mater. Res. 20, 438 (2005).

    Article  Google Scholar 

  25. T. Tunkasiri and G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996).

    Article  Google Scholar 

  26. E.K. Beauchamp, J. Am. Ceram. Soc. 54, 484 (1971).

    Article  Google Scholar 

  27. J. Luo, J. Du, Q. Tang, and C. Mao, IEEE. Trans. Electron. Dev 55, 3549 (2008).

    Article  Google Scholar 

  28. J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang, Appl. Phys. Lett. 96, 042902 (2010).

  29. J. Song, G.-H. Chen, C.-L. Yuan, and Y. Yang, Mater. Lett. 117, 7 (2014).

    Article  Google Scholar 

  30. M.J. Reece, C.A. Worrell, G.J. Hill, and R. Morrell, J. Am. Ceram. Soc. 79, 17 (1996).

    Article  Google Scholar 

  31. J. McPherson, J.-Y. Kim, A. Shanware, and H. Mogul, Appl. Phys. Lett. 82, 2121 (2003).

    Article  Google Scholar 

  32. L. Tang, J. Wang, J. Zhai, L.B. Kong, and X. Yao, Appl. Phys. Lett. 102, 142907-4 (2013).

    Google Scholar 

  33. V.O. Sherman, A.K. Tagantsev, N. Setter, D. Iddles, and T. Price, J. Appl. Phys. 99, 074104 (2006).

    Article  Google Scholar 

  34. I. Burn and D.M. Smyth, J. Mater. Sci. 7, 339 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Sciences and Technology of China through the 973-project under Grant No. 2009CB623302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wang, W., Shen, B. et al. Crystallization and Properties of Strontium Barium Niobate-Based Glass–Ceramics for Energy-Storage Applications. J. Electron. Mater. 44, 227–234 (2015). https://doi.org/10.1007/s11664-014-3389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3389-6

Keywords

Navigation