Skip to main content
Log in

Soft Magnetic Alloy–Polymer Composite for High-Frequency Power Electronics Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Soft magnetic alloys are limited to lower frequencies because of increased eddy-current losses at higher frequencies. A simple low-temperature solvent-based process was developed to coat permalloy powder with a benzocyclobutene insulating layer to reduce interparticle eddy-current loss. Low-signal measurements show that the permeability of the cured composite exhibits a bandwidth beyond 10 MHz. In contrast, the permeability of the pure powder rolled off well below 1 MHz with a corresponding increase in the imaginary permeability. Measurements of the core loss density at 5 MHz on pressed composite cores show a core loss of 300 mW/cm3 at more than 90 gauss, while the pure powder core achieved the same core loss density at just over 10 gauss. The results demonstrate that the polymer coating process is an effective way of reducing the interparticle eddy-current loss in powdered magnetic cores at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Snelling, Soft Ferrites: Properties and Applications (London: Butterworths, 1988).

    Google Scholar 

  2. M. Plaza, L. Perez, and M.C. Sanchez, J. Magn. Magn. Mater. 309, 207–211 (2007).

    Article  Google Scholar 

  3. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol. 189, 1–12 (2007).

    Article  Google Scholar 

  4. Dow Chemicals Company, Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins (2008). http://www.dow.com/cyclotene/docs/cyclotene_3000_dry_etch.pdf. Accessed 26 July 2013.

  5. M. Endo, T. Tuskada, M. Kanasugi, K. Okada, H. Moro, N. Yamaguchi, T. Yamada, and H. Kiashima, US Patent No. 6,102,980 (15 August 2000).

  6. B.T. Naughton, P. Majewski, and D.R. Clarke, J. Am. Ceram. Soc. 90, 3547–3553 (2007).

    Article  Google Scholar 

  7. M. Anhalt and B. Weidenfeller, J. Appl. Phys. 101, 023907– 023908 (2007).

    Article  Google Scholar 

  8. I. Chicinas, O. Geoffroy, O. Isnard, V. Pop, and J. Magn, Magn. Mater. 290–291, 1531–1534 (2005).

    Article  Google Scholar 

  9. I. Chicinas, O. Geoffroy, O. Isnard, and V. Pop, J. Magn. Magn. Mater. 310, 2474–2476 (2007).

    Article  Google Scholar 

  10. V.V. Polyakov and A.V. Egorov, Powder Metall. Met. Ceram. 33, 9–10 (1994).

    Article  Google Scholar 

  11. Ferroxcube, 4F1 Materials Specification (2008). http://www.ferroxcube.com/prod/assets/4f1.pdf. Accessed 26 July 2013.

  12. J. Reinert, A. Brockmeyer, and R.W.A.A. De Doncker, IEEE Trans. Ind. Appl. 37, 1055–1061 (2001).

    Article  Google Scholar 

  13. J. Muhlethaler, J. Biela, J. W. Kolar and A. Ecklebe, International Conference on Power Electronics (2010), pp. 2430–2437.

  14. V. Leonavicius, M. Duffy, U. Boeke, and S.C.O. Mathuna, IEEE Trans. Power Electron. 19, 531–541 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus N. Calata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calata, J.N., Lu, GQ. & Ngo, K. Soft Magnetic Alloy–Polymer Composite for High-Frequency Power Electronics Application. J. Electron. Mater. 43, 126–131 (2014). https://doi.org/10.1007/s11664-013-2866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2866-7

Keywords

Navigation