Skip to main content
Log in

Structure–Property Correlations in CoFe–SiO2 Nanogranular Films Utilizing x-Ray Photoelectron Spectroscopy and Small-Angle Scattering Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A quantitative structure–property correlation study of thin films consisting of CoFe nanoparticles embedded in SiO2 is presented, comparing film microstructure and chemistry with measured magnetic properties. SiO2 was fully percolated for all films with > ~50% SiO2 by volume, and decreasing CoFe-nanoparticle size and separation with increasing SiO2 resulted in a transition to superparamagnetic behavior. Partial oxidation of transition-metal elements is observed by x-ray photoelectron spectroscopy, and evidence for interparticle magnetic interactions can be resolved in soft x-ray resonant small-angle scattering experiments, highlighting the need for additional detailed and quantitative studies in this class of soft magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ram, R.R. Power Electronics in Photovoltaic Systems. 2011. http://arpa-e.energy.gov/EventsWorkshops/PastWorkshops/PowerElectronicsinPhotovoltaicSystems.aspx. Accessed Dec 2012.

  2. Ram, R. Power Electronics. 2010. http://arpa-e.energy.gov/Portals/0/Documents/ConferencesAndEvents/PastWorkshops/2010InnovationSummit/PowerElectronics_Ram.pdf. Accessed Dec 2012.

  3. Hefner, A., High Megawatt Converter Workshop, Gaithersburg, MD, 2007.

  4. Hefner, A. High-Voltage, High-Frequency Devices for Solid State Power Substation and Grid Power Converters. In High Megawatt Power Converter Technology R&D Roadmap Workshop 2008. Gaithersburg, MD.

  5. R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (New York: Wiley, 2000).

    Google Scholar 

  6. Y.S.O. Yoshizawa and K. Yamauchi, J. Appl. Phys. 64, 6044–6046 (1988).

    Article  Google Scholar 

  7. K. Suzuki, A.M.A. Inoue, and T. Masumoto, J. Appl. Phys. 70, 6232–6237 (1991).

    Article  Google Scholar 

  8. M. McHenry and D.E. Laughlin, Prog. Mater. Sci. 44, 291–433 (1999).

    Article  Google Scholar 

  9. S. Ohnuma, M. Ohnuma, H. Fujimori, and T. Masumoto, J. Magn. Magn. Mater. 310, 2503–2509 (2007).

    Article  Google Scholar 

  10. W. Li, Y. Sun, and C.R. Sullivan, IEEE Trans. Magn. 41, 3283–3285 (2005).

    Article  Google Scholar 

  11. A. Leary, P.R. Ohodnicki, and M. McHenry, J. Met. 64, 722–781 (2012).

    Google Scholar 

  12. S. Shen, P.R. Ohodnicki, S. Kernion, A. Leary, V. Keylin, J. Huth, and M. E. McHenry. Nanocomposite alloy design for high frequency power conversion applications. In TMS Annual 2012. 2012. Orlando, FL.

  13. P.R. Ohodnicki, J. L, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 104, 113909–113915 (2008).

    Article  Google Scholar 

  14. P.R. Ohodnicki, S.Y. Park, D.E. Laughlin, M.E. McHenry, V. Keylin, and M.A. Willard, J. Appl. Phys. 103, 07E729–07E731 (2008).

    Google Scholar 

  15. M.A. Willard, D.E. L, and M.E. McHenry, J. Appl. Phys. 87, 7091–7096 (2000).

    Article  Google Scholar 

  16. M.A. Willard, M.Q. H, D.E. Laughlin, M.E. McHenry, J.O. Cross, and V.G. Harris, J. Appl. Phys. 85, 4421–4423 (1999).

    Article  Google Scholar 

  17. P.R. Ohodnicki, Y. L.Q, D.E. Laughlin, M.E. McHenry, M. Kodzuka, T. Ohkubo, K. Hono, and M.A. Willard, Acta Mater. 57, 87–96 (2009).

    Article  Google Scholar 

  18. H. Okumura, C.Y. U, M.E. McHenry, S. Chu, D.E. Laughlin, and A.B. Kos, IEEE Trans. Magn. 40, 2700–2702 (2004).

    Article  Google Scholar 

  19. H. Okumura, D.J. T, R.D. McMichael, M.Q. Huang, Y.N. Hsu, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 95, 6528–6530 (2003).

    Article  Google Scholar 

  20. M.Q. Huang, Y.N. H, M.E. McHenry, and D.E. Laughlin, IEEE Trans. Magn. 37, 2239–2241 (2001).

    Article  Google Scholar 

  21. R.S. Ishkhakov, G.I. F, V.S. Zhigalov, and D.E. Prokof’ev, Tech. Phys. Lett. 30, 687–689 (2004).

    Article  Google Scholar 

  22. E. Fullerton, O. H, Y. Ikeda, B. Lengsfield, K. Takano, and J. Kortright, IEEE Trans. Magn. 38, 1693–1696 (2002).

    Article  Google Scholar 

  23. J.B. Kortright, K. Sang-Koog, G.P. Denbeaux, G. Zeltzer, K. Takano, and E.E. Fullerton, Phys. Rev. B 64, 092401 (2001).

    Article  Google Scholar 

  24. P. Sheng, Electronic Transport in Granular Metal Films, Nanophase Materials (Dordrecht: Kluwer Academic, 1994).

    Google Scholar 

  25. P. Ohodnicki, et al., Acta Mater. 58, 4804–4813 (2010).

    Article  Google Scholar 

  26. F.D. Geuser and A. D, C. R. Phys. 13, 246–256 (2012).

    Article  Google Scholar 

  27. R. Borsali, R. Pecora, eds., Soft-Matter Characterization. (Berlin: Springer, 2008).

  28. E. Huang, P.K. Liaw, L. Porcar, Y. Liu, Y. Liu, J. Kai, and W. Chen, Appl. Phys. Lett. 93, 161904-1–161904-4 (2008).

    Google Scholar 

  29. K. Suzuki and J.M. Cadogan, Phys. Rev. B 58, 2730–2739 (1998).

    Article  Google Scholar 

  30. E.F. Kneller and F.E. L, J. Appl. Phys. 34, 656–658 (1963).

    Article  Google Scholar 

  31. V. Franco, C.F. Conde, and A. Conde, Phys. Rev. B 72, 174424-1–174424-10 (2005).

    Article  Google Scholar 

  32. P. Allia, M. Coisson, M. Knobel, P. Tiberto, and F. Vinai, Phys. Rev. B 60, 12207–12218 (1999).

    Article  Google Scholar 

  33. J.B. Kortright, O. Helllwig, K. Chesnel, S. Sun, and E.E. Fullerton, Phys. Rev. B 71, 012402-1–012402-4 (2005).

    Article  Google Scholar 

  34. S. Sankar, D. Dender, J.A. Borchers, D.J. Smith, R.W. Erwin, S.R. Kline, and A.E. Berkowitz, J. Magn. Magn. Mater. 221, 1–9 (2000).

    Article  Google Scholar 

  35. S. Bedanta, T. Eimüller, W. Kleeman, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P.P. Freitas, Phys. Rev. Lett. 98, 176601-1–176601-4 (2007).

    Article  Google Scholar 

  36. M. Knobel, W.C. N, A.L. Brandl, J.M. Vargas, L.M. Socolovsky, and D. Zanchet, Phys. B 354, 80–87 (2004).

    Article  Google Scholar 

  37. S. Morup, M.F. Hansen, and C. Frandsen, Beilstein J. Nanotechnol. 1, 182–190 (2010).

    Article  Google Scholar 

  38. L. Neel, Comptes Rendus 255, 1676 (1962).

    Google Scholar 

  39. B. Dieny, V.S. S, S.S. Parkin, B.A. Gurney, D.R. Wilhoit, and D. Mauri, Phys. Rev. B43, 1297 (1991).

    Article  Google Scholar 

  40. J. Zhang and R.M. W, IEEE Trans. Magn. 32, 4630 (1996).

    Article  Google Scholar 

  41. Y. Yang, L. Z, W. Lan, and X. Bi, Rare Met. 30, 533–537 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.R. Ohodnicki Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohodnicki, P., Sokalski, V., Baltrus, J. et al. Structure–Property Correlations in CoFe–SiO2 Nanogranular Films Utilizing x-Ray Photoelectron Spectroscopy and Small-Angle Scattering Techniques. J. Electron. Mater. 43, 142–150 (2014). https://doi.org/10.1007/s11664-013-2716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2716-7

Keywords

Navigation