Skip to main content
Log in

Quantitative Comparison Between Dislocation Densities in Offcut 4H-SiC Wafers Measured Using Synchrotron X-ray Topography and Molten KOH Etching

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molten KOH etching and x-ray topography have been well established as two of the major characterization techniques used for observing as well as analyzing the various crystallographic defects in both substrates and homoepitaxial layers of silicon carbide. Regarding assessment of dislocation density in commercial wafers, though the two techniques show good consistency in threading dislocation density analysis, significant discrepancy is found in the case of basal plane dislocations (BPDs). In this paper we compare measurements of BPD densities in 4-inch 4H-SiC commercial wafers assessed using both etching and topography methods. The ratio of the BPD density calculated from topographic images to that from etch pits is estimated to be larger than 1/sinθ, where θ is the offcut angle of the wafer. Based on the orientations of the defects in the wafers, a theoretical model is put forward to explain this disparity and two main sources of errors in assessing the BPD density using chemical etching are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Neudeck, in The VLSI Handbook (The Electrical Engineering Handbook Series), ed. by W.-K. Chen (CRC/IEEE, Boca Raton, FL, 2000), pp. 6.1–6.24

  2. P.G. Neudeck, Mater. Sci. Forum 338–342, 1161 (2000).

    Article  Google Scholar 

  3. St.G. Müller, in Superlattices and Microstructures, Vol. 40, (Spring Meeting of the European Materials Research Society, Nice, 2006), pp. 195–200.

  4. Q. Wahab, A. Ellison, A. Henry, E. Janzen, C. Hallin, J. Di Persio, and R. Martinez, Appl. Phys. Lett. 76, 2725 (2000). doi:10.1063/1.126456.

    Article  CAS  Google Scholar 

  5. R. Singh, Microelectron. Reliab. 46, 713 (2006). doi:10.1016/j.microrel.2005.10.013.

    Article  CAS  Google Scholar 

  6. P. Bergman, H. Lendenmann, P.A. Nilsson, U. Lindefelt, and P. Skytt, Mater. Sci. Forum 353–356, 299 (2001). doi:10.4028/www.scientific.net/MSF.353-356.299.

    Article  Google Scholar 

  7. R.E. Stahlbush, M. Fatemi, J.B. Fedison, S.D. Arthur, L.B. Rowland, and S. Wang, J. Electron. Mater. 31, 370 (2002). doi:10.1007/s11664-002-0085-8.

    Article  CAS  Google Scholar 

  8. R.E. Stahlbush, K.X. Liu, M.E. Twigg, in IRPS Conf. Rec., (IEEE, San Jose, 2006), 26–30, pp. 90–94, doi:10.1109/RELPHY.2006.251196

  9. V.D. Wheeler, B.L. VanMil, R.L. Myers-Ward, C.R. Eddy, R.E. Stahlbush, D.K. Gaskill, (ISDRS, Stamp College Park, MD, 2009), pp. 1–2, 9–11 doi:10.1109/ISDRS.2009.5378072

  10. X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, J. Appl. Phys. 102, 093520 (2007). doi:10.1063/1.2809343.

    Article  Google Scholar 

  11. W. Chen and M.A. Capano, J. Appl. Phys. 98, 114907 (2005). doi:10.1063/1.2137442.

    Article  Google Scholar 

  12. H.Z. Song and T.S. Sudarshan, Mater. Sci. Forum 717–720, 125 (2012). doi:10.4028/www.scientific.net/MSF.717-720.125.

    Article  Google Scholar 

  13. R.T. Bondokov, I.I. Khlebnikov, T. Lashkov, E. Tupitsyn, G. Stratiy, Y. Khlebnikov, and T.S. Sudarshan, Jpn. J. Appl. Phys. 41, 7312 (2002). doi:10.1143/JJAP.41.7312.

    Article  CAS  Google Scholar 

  14. M. Dudley and X. Huang, Mater. Sci. Forum 338–342, 431 (2000). doi:10.4028/www.scientific.net/MSF.338-342.431.

    Article  Google Scholar 

  15. B. Kallinger, S. Polster, P. Berwian, J. Friedrich, G. Müller, A.N. Danilewsky, A. Wehrhahn, and A.D. Weber, J. Cry-st. Growth 314, 21 (2011). doi:10.1016/j.jcrysgro.2010.10.145.

    Article  CAS  Google Scholar 

  16. H. Tsuchida, I. Kamata, and M. Nagano, J. Cryst. Growth 306, 254 (2007). doi:10.1016/j.jcrysgro.2007.05.006.

    Article  CAS  Google Scholar 

  17. S.A. Sakwe, R. MüllerWellmann, and P.J. Wellmann, J. Cryst. Growth 289, 520 (2006). doi:10.1016/j.jcrysgro.2005.11.096.

    Article  CAS  Google Scholar 

  18. Y. Ishikawa, Y. Yao, Y. Sugawar, K. Danno, H. Suzuki, Y. Kawai, and N. Shibata, Mater. Sci. Forum 717–720, 367 (2012). doi:10.4028/www.scientific.net/MSF.717-720.367.

    Article  Google Scholar 

  19. Y. Chen, Defects Structures in Silicon Carbide Bulk Crystals, Epilayers and Devices, Ph.D. Thesis. Stony Brook University, U.S. (2009) (http://hdl.handle.net/1951/45064).

  20. A. Authier, Adv. X-ray Anal. 10, 9 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Sun, S., Dudley, M. et al. Quantitative Comparison Between Dislocation Densities in Offcut 4H-SiC Wafers Measured Using Synchrotron X-ray Topography and Molten KOH Etching. J. Electron. Mater. 42, 794–798 (2013). https://doi.org/10.1007/s11664-013-2527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2527-x

Keywords

Navigation