Skip to main content
Log in

Effect of Se Substitution on Structural and Electrical Transport Properties of Bi0.4Sb1.6Se3x Te3(1−x) Hexagonal Rods

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the current study, novel hexagonal rods based on Bi0.4Sb1.6Te3 ingots dispersed with x amount of Se (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) in the form Bi0.4Sb1.6Se3x Te3(1−x) were synthesized via a standard solid-state microwave route. The morphologies of these rods were explored using field-emission scanning electron microscopy (FESEM). The crystal structure of the powders was examined by x-ray diffraction (XRD) analysis, which showed that powders of the 0.0 ≤ x ≤ 0.8 samples could be indexed to the rhombohedral phase, whereas the sample with x = 1.0 had an orthorhombic phase structure. The influence of variations in the Se content on the thermoelectric properties was studied in the temperature range from 300 K to 523 K. Alloying of Se into Bi0.4Sb1.6Te3 effectively caused a decrease in the hole concentration and, thus, a decrease in the electrical conductivity and an increase in the Seebeck coefficient. The maximal power factor measured in the present work was 7.47 mW/mK2 at 373 K for the x = 0.8 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hong, S. Lee, and B. Chun, Mater. Sci. Eng. B 98, 232–238 (2003).

    Article  Google Scholar 

  2. L. Zhao, B. Zhang, J. Li, M. Zhou, W. Liu, and J. Liu, J. Alloys Compd. 455, 259–264 (2008).

    Article  CAS  Google Scholar 

  3. C. Moon, S. Shin, D. Kim, and T. Kim, J. Alloys Compd. 504, S504–S507 (2010).

    Article  Google Scholar 

  4. S. Nakajima, J. Phys. Chem. Solids 24, 479–485 (1963).

    Article  CAS  Google Scholar 

  5. Y. Zhou, X. Li, S. Bai, and L. Chen, J. Cryst. Growth 312, 775–780 (2010).

    Article  CAS  Google Scholar 

  6. Y. Zhang, G. Xu, J. Mi, F. Han, Ze. Wang, and C. Ge, Mater. Res. Bull. 46, 760–764 (2011).

    Article  CAS  Google Scholar 

  7. Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhao, Mater. Chem. Phys. 103, 484 (2007).

    Article  CAS  Google Scholar 

  8. T. Su, P. Zhu, H. Ma, G. Ren, L. Chen, W. Guo, Y. Iami, and X. Jia, Solid State Commun. 138, 580–584 (2006).

    Article  CAS  Google Scholar 

  9. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, J. Cryst. Growth 277, 258–263 (2005).

    Article  CAS  Google Scholar 

  10. M.G. Kanatzidis, S.D. Mahanti, and T.P. Hogan, Chemistry, Physics and Materials Science of Thermoelectric Materials, 2nd ed. (New York: Plenum, 2003).

    Book  Google Scholar 

  11. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics, 1st ed. (New York: Springer, 2001).

    Book  Google Scholar 

  12. C. Mastrovito, J.W. Lekse, and J.A. Aitken, J. Solid State Chem. 180, 3262–3270 (2007).

    Article  CAS  Google Scholar 

  13. Z. Zhou, Y.-J. Chien, and C. Uher, Appl. Phys. Lett. 87, 112503 (2005).

    Article  Google Scholar 

  14. A. Kadhim, A. Hmood, and H. Abu Hassan, Mater. Lett. 65, 3105–3108 (2011).

    Article  CAS  Google Scholar 

  15. T. Suriwong, S. Thongtem, and T. Thongtem, Mater. Lett. 63, 2103–2106 (2009).

    Article  CAS  Google Scholar 

  16. G. Zhou, V.G. Pol, O. Palchika, R. Kerner, E. Sominski, Y. Koltypin, and A. Gedanken, J. Solid State Chem. 177, 361 (2004).

    Article  CAS  Google Scholar 

  17. K.J. Rao, B. Vaidhyanathan, M. Ganguli, and P.A. Ramakrishnan, Chem. Mater. 11, 882 (1999).

    Article  CAS  Google Scholar 

  18. R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Nature 401, 304 (1999).

    Article  CAS  Google Scholar 

  19. M. Jeselnik, R.S. Varma, S. Polanc, and M. Kocevar, Green Chem. 4, 35 (2002).

    Article  CAS  Google Scholar 

  20. A. Hmood, A. Kadhim, and H. Abu Hassan, Super. Microstruct. 53, 39 (2013).

    Article  CAS  Google Scholar 

  21. W. Shanyu, X. Wenjie, L. Han, and T. Xinfeng, Intermetallics 19, 1024 (2011).

    Article  Google Scholar 

  22. J. Horak, K. Cermak, and L. Koudelka, Phys. J. Chem. Solids 47, 805 (1986).

    Article  CAS  Google Scholar 

  23. H.C. Kim, T.S. Oh, and D.-B. Hyun, Phys. J. Chem. Solids 61, 743 (2000).

    Article  CAS  Google Scholar 

  24. A. Hmood, A. Kadhim, and H. Abu Hassan, Mater. Chem. Phys. 136, 1148 (2012).

    Article  CAS  Google Scholar 

  25. B.D. Cullity, Element of X-ray Diffraction, 3rd ed. (Reading: Wesley, 1967).

    Google Scholar 

  26. D.H. Kim, C. Kim, S.H. Heo, and H. Kim, Acta Mater. 59, 405 (2011).

    Article  CAS  Google Scholar 

  27. Q. Zhao and Y.G. Wang, J. Alloys Compd. 497, 57 (2010).

    Article  CAS  Google Scholar 

  28. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press Taylor & Francis Group, 2006).

    Google Scholar 

  29. T. Plechacek, J. Navratil, and J. Horak, J. Solid State Chem. 165, 35 (2002).

    Article  CAS  Google Scholar 

  30. J.L. Cui, W.J. Xiu, L.D. Mao, P.Z. Ying, L. Jiang, and X. Qian, J. Solid State Chem. 180, 1158 (2007).

    Article  CAS  Google Scholar 

  31. A. Hmood, A. Kadhim, and H. Abu Hassan, J. Alloys Compd. 520, 1 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arej Kadhim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadhim, A., Hmood, A. & Abu Hassan, H. Effect of Se Substitution on Structural and Electrical Transport Properties of Bi0.4Sb1.6Se3x Te3(1−x) Hexagonal Rods. J. Electron. Mater. 42, 1017–1023 (2013). https://doi.org/10.1007/s11664-013-2496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2496-0

Keywords

Navigation