Skip to main content
Log in

Quantum Transport Properties of Graphene Nanoribbons with Defects and Dephasing Scattering Processes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

By applying the nonequilibrium Green function method, we have theoretically investigated the quantum transport properties of armchair and zigzag graphene nanoribbons (GNRs), with defects (vacancies) appearing at the edges or in the inner part. Effects of the defects on the electronic conductance and local density of states are comprehensively studied. It is found that both edge and inner defects reduce the electronic conductance in general, while in detail they have different effects on the transport properties for different combinations of defect location and GNR edge type. Under the same theoretical framework, we have also studied the effects of dephasing scattering processes in the GNRs, employing two specific choices of self-energy that provide momentum-conserving or momentum-relaxing dephasing processes. The momentum-relaxing dephasing processes not only relax momentum but also add an additional resistance to the channel, while the momentum- conserving dephasing processes only break the phase and have much less effect on the resistance. It is found that the transport properties of metallic zigzag GNRs are much more strongly modified by the dephasing scattering processes than are those of semiconducting armchair GNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  3. B. Huang, Q. Yan, Z. Li, and W. Duan, Front. Phys. China 4, 269 (2009).

    Article  Google Scholar 

  4. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  CAS  Google Scholar 

  5. A.R. Akhmerov, J.H. Bardarson, A. Rycerz, and C.W.J. Beenakker, Phys. Rev. B 77, 205416 (2008).

    Article  Google Scholar 

  6. S. Datta, Electronic Trnsport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1995).

    Google Scholar 

  7. M. Wilson, Phys. Today 59, 21 (2006).

    Google Scholar 

  8. D. Usachov, A.M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A.M. Shikin, and V.K. Adamchuk, Phys. Rev. B 78, 085403 (2008).

    Article  Google Scholar 

  9. P.W. Sutter, J. Flege, and E.A. Sutter, Nat. Mater. 7, 406 (2008).

    Article  CAS  Google Scholar 

  10. D. Martoccia, P.R. Willmott, T. Brugger, M. Bjorck, S. Gunther, C.M. Schleputz, A. Cervellino, S.A. Pauli, B.D. Patterson, S. Marchini, J. Wintterlin, W. Moritz, and T. Greber, Phys. Rev. Lett. 101, 126102 (2008).

    Article  CAS  Google Scholar 

  11. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett. 8, 2012 (2008).

    Article  CAS  Google Scholar 

  12. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, and M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  13. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, Kwang S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Nature (London) 457, 706 (2009).

    Article  CAS  Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature (London) 442, 282 (2006).

    Article  CAS  Google Scholar 

  15. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prudhomme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).

    Article  CAS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and I.V. Grigorieva, A.A. Firsov, Nature (London) 438, 197 (2005).

    Article  CAS  Google Scholar 

  18. M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, and P. Kim, Phys. Stat. Sol. (b) 244, 4134 (2007).

    Article  CAS  Google Scholar 

  19. M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  20. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Phys. Rev. Lett. 100, 16602 (2008).

    Article  CAS  Google Scholar 

  21. N. Gorjizadeh, A. Farajian, and Y. Kawazoe, Nanotechnology 20, 015201 (2009).

    Article  Google Scholar 

  22. K. Sasaki, S. Murakami, and R. Saito, Appl. Phys. Lett. 88, 113110 (2006).

    Article  Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (San Diego: Academic, 1996).

    Google Scholar 

  24. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  25. Y. Kobayashi, K.-I. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Phys. Rev. B 71, 193406 (2005).

    Article  Google Scholar 

  26. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Furukawa, Phys. Rev. B 73, 085421 (2006).

    Article  Google Scholar 

  27. A. Hashimoto, K. Suenaga, A. Gloter, K. Urika, and S. Iijima, Nature 430, 870 (2004).

    Article  CAS  Google Scholar 

  28. A. Farajian, K. Esfarjani, and M. Mikami, Phys. Rev. B 65, 165415 (2002).

    Article  Google Scholar 

  29. E.R. Mucciolo, A.H. Castro Neto, and C.H. Lewenkopf, Phys. Rev. B 79, 075407 (2009).

    Article  Google Scholar 

  30. M. Evaldsson, I.V. Zozoulenko, H. Xu, and T. Heinzel, Phys. Rev. B 78, 161407(R) (2008).

    Article  Google Scholar 

  31. V.M. Pereira, J.M.B. Lopesdos Santos, and A.H. Castro Neto, Phys. Rev. B 77, 115109 (2008).

    Article  Google Scholar 

  32. A. La Magna, I. Deretzis, G. Forte, and R. Pucci, Phys. Rev. B 80, 195413 (2009).

    Article  Google Scholar 

  33. J. Cervenka, M.I. Katsnelson, and C.F.J. Flipse, Nat. Phys. 5, 840 (2009).

    Article  CAS  Google Scholar 

  34. A.L. Friedman, H. Chun, Y.J. Jung, D. Heiman, E.R. Glaser, L. Menon, Phys. Rev. B 81, 115461 (2010).

    Article  Google Scholar 

  35. A.L. Friedman, H. Chun, D. Heiman, Y.J. Jung, and L. Menon, Physica B 406, 841 (2011).

    Google Scholar 

  36. A.R. Botello-Mendez, F. Lopez-Urias, E. Cruz-Silva, B.G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Phys. Stat. Sol. RRL 3, 181 (2009).

    Article  CAS  Google Scholar 

  37. Y. Yoon J. Guo, Appl. Phys. Lett. 91, 73103 (2007).

    Article  Google Scholar 

  38. R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 75, 081301(R) (2007).

    Article  Google Scholar 

  39. J. Poumirol, A. Cresti, S. Roche, W. Escoffier, M. Goiran, X. Wang, X. Li, H. and Dai, B. Raquet, arXiv: 1002.4571.

  40. I. Deretzis, G. Fiori, G. Iannaccone, and A. La Magna, Phys. Rev. B 81, 085427 (2010).

    Article  Google Scholar 

  41. M. Buttiker, IBM J. Res. Dev. 32, 72 (1988).

    Google Scholar 

  42. S. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche, ACS Nano 4, 1971 (2010).

    Article  CAS  Google Scholar 

  43. R.Y. Oeiras, F.M. Araujo-Moreira, and E.Z. da Silva, Phys. Rev. B 80, 073405 (2009).

    Article  Google Scholar 

  44. M. Carlsson and M. Scheffler, Phys. Rev. Lett. 96, 046806 (2006).

    Article  Google Scholar 

  45. G.-D. Lee, C.Z. Wang, E. Yoon, N.-M. Hwang, and K.M. Ho, Phys. Rev. B 74, 245411 (2006).

    Article  Google Scholar 

  46. Y.-W. Son, M.L. Cohen, and S. Louie, Nature 444, 347 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ya Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, GY., Zhu, Yj. Quantum Transport Properties of Graphene Nanoribbons with Defects and Dephasing Scattering Processes. J. Electron. Mater. 42, 1–9 (2013). https://doi.org/10.1007/s11664-012-2243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2243-y

Keywords

Navigation