Skip to main content
Log in

A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A low-temperature bonding process to form joints with high strength and ionic migration resistance using mixed Cu–Ag nanoparticles was studied. Although it was difficult to obtain strong joints using Cu nanoparticles, with the addition of Ag nanoparticles to the Cu nanoparticles the bonding strength of the Cu-to-Cu joints increased. The joints formed by the mixed Cu–Ag nanoparticles at 350°C exhibited a high bonding strength of ~50 MPa. Counterelectrodes made of the mixed Cu–Ag nanoparticles had four times higher ionic migration resistance compared with counterelectrodes made only of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Goldstem, C.M. Esher, and A.P. Alivisatos, Science 256, 1425 (1992).

    Article  ADS  Google Scholar 

  2. L.N. Lewis, Chem. Rev. 93, 2693 (1993).

    Article  CAS  Google Scholar 

  3. M.T. Reetz, W. Helbig, S.A. Quaiser, U. Stimming, N. Breuer, and R. Vogel, Science 267, 367 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. J.S. Bradley, B. Teshe, W. Busser, M. Maase, and M.T. Reets, J. Am. Chem. Soc. 122, 4631 (2000).

    Article  CAS  Google Scholar 

  5. S.H. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. M.B. Thathagar, J. Beckers, and G. Rothenberg, J. Am. Chem. Soc. 124, 11858 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. T.K. Sau, A. Pal, and T. Pal, J. Phys. Chem. B 105, 9266 (2001).

    Article  CAS  Google Scholar 

  8. C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, and J.M. Gibson, Science 277, 1978 (1997).

    Article  CAS  Google Scholar 

  9. H. Kats, Z. Bao, and S. Gilat, Acc. Chem. Res. 34, 359 (2001).

    Article  CAS  Google Scholar 

  10. C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  CAS  Google Scholar 

  11. R.F. Service, Science 281, 940 (1998).

    Article  CAS  Google Scholar 

  12. K. Kurihara, J. Kizling, P. Stenius, and J.H. Fendler, J. Am. Chem. Soc. 105, 2574 (1983).

    Article  CAS  Google Scholar 

  13. N. Toshima and Y. Wang, Langmuir 10, 4574 (1994).

    Article  CAS  Google Scholar 

  14. Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, J. Colloid Interface Sci. 300, 169 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. M. Yamamoto and M. Nakamoto, J. Mater. Chem. 13, 2064 (2003).

    Article  CAS  Google Scholar 

  16. M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, Langmuir 22, 8581 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. M. Nakamoto, M. Yamamoto, and Y. Kashiwagi, Metal Nanoclusters in Catalysis and Materials ScienceThe Issue of Size Control, ed. B. Corain, G. Schmid, and N. Toshima (Elsevier, Amsterdam, 2008), pp. 367–372.

  18. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).

    Article  CAS  Google Scholar 

  19. T. Nagaoka, Y. Morisada, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, Y. Yoshida, H. Kakiuchi, and S. Matsumura, Proceeding of 14th Symposium on “Microjoining and Assembly Technology in Electronics” (Yokohama, Japan, February 2008), pp. 191–194.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Morisada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morisada, Y., Nagaoka, T., Fukusumi, M. et al. A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles. J. Electron. Mater. 39, 1283–1288 (2010). https://doi.org/10.1007/s11664-010-1195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1195-3

Keywords

Navigation