Skip to main content
Log in

Evaluation of Stress and Crystal Quality in Si During Shallow Trench Isolation by UV-Raman Spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Defects and stress gradually accumulate throughout various Si large-scale integration fabrication processes. It is essential to monitor defects and stress carefully to suppress their unintentional introduction. In this study, we measured the stress and crystal quality in shallow trench isolation (STI) samples by ultraviolet (UV)-Raman spectroscopy with an extremely high-resolution wavenumber to evaluate the effect of post-annealing on the recovery of Si crystals. The variations of crystal quality in 200-mm wafers with STI structures gradually decreased after post-annealing for 4 h, 6 h, and 8 h; however, there was no substantial difference in the values of full-width at half-maximum of the Raman spectra. Precise measurements of variations of stress and crystal quality were successfully performed by UV-Raman spectroscopy with a high-resolution wavenumber, which enabled us to evaluate the STI process accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ito, H. Azuma, and S. Noda, Jpn. J. Appl. Phys. 33, 171 (1994).

    Article  CAS  ADS  Google Scholar 

  2. Q. Ma, S. Chiras, D.R. Clarke, and Z. Suo, J. Appl. Phys. 78, 1614 (1995).

    Article  CAS  ADS  Google Scholar 

  3. S.C. Jain, A.H. Harker, A. Atkinson, and K. Pinardi, J. Appl. Phys. 78, 1630 (1995).

    Article  CAS  ADS  Google Scholar 

  4. I. De Wolf, Semicond. Sci. Technol. 11, 139 (1996).

    Article  ADS  Google Scholar 

  5. A. Ogura, T. Yoshida, D. Kosemura, Y. Kakemura, T. Aratani, M. Higuchi, S. Sugawa, A. Teramoto, T. Ohmi, and T. Hattori, Appl. Surf. Sci. 254, 6229 (2008).

    Article  CAS  ADS  Google Scholar 

  6. A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, Jpn. J. Appl. Phys. 47, 1465 (2008).

    Article  CAS  ADS  Google Scholar 

  7. A. Ogura, D. Kosemura, M. Takei, H. Uchida, N. Hattori, M. Yoshimaru, S. Mayuzumi, and H. Wakabayashi, Mater. Sci. Eng. B 159–160, 206 (2008).

    Google Scholar 

  8. M. Kodera, T. Iguchi, N. Tsuchiya, M. Tamura, S. Kakinuma, N. Naka, and S. Kashiwagi, Jpn. J. Appl. Phys. 47, 2506 (2008).

    Article  ADS  Google Scholar 

  9. D. Kosemura, Y. Kakemura, T. Yoshida, A. Ogura, M. Kohno, T. Nishita, and T. Nakanishi, Jpn. J. Appl. Phys. 47, 2538 (2008).

    Article  CAS  ADS  Google Scholar 

  10. D. Kosemura, M. Takei, K. Nagata, H. Akamatsu, M. Kohno, T. Nishita, T. Nakanishi, and A. Ogura, Jpn. J. Appl. Phys. 48, 066508 (2009).

    Article  ADS  Google Scholar 

  11. M. Komatsubara, T. Namazu, Y. Nagai, S. Inoue, N. Naka, S. Kashiwagi, and K. Ohtsuki, Jpn. J. Appl. Phys. 48, 04C021 (2009).

    Article  Google Scholar 

  12. T. Nakashima and T. Katoda, J. Appl. Phys. 8, 5870 (1982).

    ADS  Google Scholar 

  13. A. Othonos, C. Christofides, J. Boussey-Said, and M. Bisson, J. Appl. Phys. 75, 8032 (1994).

    Article  CAS  ADS  Google Scholar 

  14. K. Mizoguchi, Y. Yamauchi, H. Harima, and S. Nakashima, J. Appl. Phys. 78, 3357 (1995).

    Article  CAS  ADS  Google Scholar 

  15. K. Kitahara, R. Yamazaki, T. Kurosawa, K. Nakajima, and A. Moritani, Jpn. J. Appl. Phys. 41, 5055 (2002).

    Article  CAS  ADS  Google Scholar 

  16. S. Kouteva-Arguirova, W. Seifert, M. Kittler, and J. Reif, Mater. Sci. Eng. B102, 37 (2003).

    Article  CAS  Google Scholar 

  17. T. Tachibana, J. Masuda, K. Imai, A. Ogura, Y. Ohshita, K. Arafune, and M. Tajima, Jpn. J. Appl. Phys. 48, 121202 (2009).

    Article  ADS  Google Scholar 

  18. A. Ogura, K. Yamasaki, D. Kosemura, S. Tanaka, I. Chiba, and R. Shimidzu, Jpn. J. Appl. Phys. 45, 3007 (2006).

    Article  CAS  ADS  Google Scholar 

  19. M. Holtz, W.M. Duncan, S. Zollner, and R. Liu, J. Appl. Phys. 88, 2523 (2000).

    Article  CAS  ADS  Google Scholar 

  20. F. Cerdeira, C.J. Buchenauer, F.H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1971).

    Article  ADS  Google Scholar 

  21. K.K. Tiong, P.M. Amirtharaj, and F.H. Pollak, Appl. Phys. Lett. 44, 122 (1983).

    Article  ADS  Google Scholar 

  22. A. Ogura, H. Saitoh, D. Kosemura, Y. Kakemura, T. Yoshida, M. Takei, T. Koganezawa, I. Hirosawa, M. Kohno, T. Nishita, and T. Nakanishi, Electrochem. Solid State Lett. 12, H117 (2009).

    Article  CAS  Google Scholar 

  23. N. Sugiyama, T. Numata, N. Hirashita, T. Irisawa, and S. Takagi, Jpn. J. Appl. Phys. 47, 4403 (2008).

    Article  CAS  ADS  Google Scholar 

  24. A.T. Putra, A. Nishida, S. Kamohara, T. Tsunomura, and T. Hiramoto, Jpn. J. Appl. Phys. 48, 044502 (2009).

    Article  ADS  Google Scholar 

  25. V. Poborchii, T. Tada, and T. Kanayama, Appl. Phys. Lett. 94, 131907 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT: 19026013), and performed as a shuttle service of the Semiconductor Technology Academic Research Center (STARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kosemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosemura, D., Hattori, M., Yoshida, T. et al. Evaluation of Stress and Crystal Quality in Si During Shallow Trench Isolation by UV-Raman Spectroscopy. J. Electron. Mater. 39, 694–699 (2010). https://doi.org/10.1007/s11664-010-1148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1148-x

Keywords

Navigation