Skip to main content
Log in

Dual-Gate Multiple-Channel ZnO Nanowire Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We report on conventional multichannel ZnO nanowire field-effect transistors (FETs) operating in one device in a dual-gate mode. Our FETs were prepared by assembling ZnO nanowires on a Si substrate using an optimized dielectrophoresis technique with bottom-gate and top-gate FET structures. We observed that the enhancement of the electrical characteristics in FETs with top-gate mode operation results from a thinner gate oxide and top-gate geometry compared with FETs with bottom-gate mode operation. It was also verified that surface passivation strongly affected the electrical performance of ZnO nanowire FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldberger, D.J. Sirbuly, M. Law, and P. Yang, J. Phys. Chem. B 109, 9 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. W. Park, J.S. Kim, G.C. Yi, M.H. Bae, and H.J. Lee, Appl. Phys. Lett. 85, 5052 (2004).

    Article  CAS  ADS  Google Scholar 

  3. D.I. Suh, S.Y. Lee, J.H. Hyung, T.H. Kim, and S.K. Lee, J. Phys. Chem. C 112, 1276 (2008).

    Article  CAS  Google Scholar 

  4. W.K. Hong, D.K. Hwang, I.K. Park, G. Jo, S. Song, S.J. Park, T. Lee, B.J. Kim, and E.A. Stach, Appl. Phys. Lett. 90, 243103 (2007).

    Article  ADS  Google Scholar 

  5. P.C. Chang, Z. Fan, C.J. Chien, D. Stichtenoth, C. Ronning, and J.G. Lu, Appl. Phys. Lett. 89, 133113 (2006).

    Article  ADS  Google Scholar 

  6. W. Mönch, J. Vac. Sci. Technol. B4, 1085 (1986).

    Google Scholar 

  7. H.-J. Kim, C.-H. Lee, D.-W. Kim, and G.-C. Yi, Nanotechnology 17, S327 (2006).

    Article  CAS  ADS  Google Scholar 

  8. D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, and S.K. Lee, Chem. Phys. Lett. 442, 338 (2007).

    Article  ADS  Google Scholar 

  9. T.-H. Kim, S.-Y. Lee, N.-K. Cho, H.-K. Sung, H.-J. Choi, S.-W. Jung, and S.-K. Lee, Nanotechnology 17, 3394 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. H.A. Pohl, Dielectrophoresis (Cambridge: Cambridge University Press, 1978).

    Google Scholar 

  11. L. Zheng, S. Li, J.P. Brody, and P.J. Burke, Langmuir 20, 8612 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. D.L. Fan, F.Q. Zhu, R.C. Cammarata, and C.L. Chien, Appl. Phys. Lett. 85, 4175 (2004).

    Article  CAS  ADS  Google Scholar 

  13. W.-K. Hong, S.H. Song, D.-K. Hwang, S.-S. Kwon, G.H. Jo, S.-J. Park, and T.H. Lee, Appl. Surf. Sci. 254, 7559 (2008).

    Article  CAS  ADS  Google Scholar 

  14. L. Zhang, R. Tu, and H. Dai, Nano. Lett. 6, 2785 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by Korea Research Foundation Grant funded by Korean Government (MOEHRD) (KRF-2008-005-J00301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Kwon Lee.

Additional information

Dong-Joo Kim, Jung-Hwan Hyung, and Duk-Won Seo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DJ., Hyung, JH., Seo, DW. et al. Dual-Gate Multiple-Channel ZnO Nanowire Transistors. J. Electron. Mater. 39, 563–567 (2010). https://doi.org/10.1007/s11664-009-0984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0984-z

Keywords

Navigation