Skip to main content
Log in

Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A simple, noninvasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size, and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004). doi:10.1126/science.1102896.

    Article  PubMed  ADS  CAS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys., 81, 109 (2009). doi:10.1103/RevModPhys.81.109.

    Article  ADS  CAS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 438, 197 (2005). doi:10.1038/nature04233.

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Y. Zhang, Y. Tan, H. L. Stormer, P. Kim, Y. Zhang et. al., Nature, 438, 201 (2005). doi:10.1038/nature04235.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007). doi:10.1126/science.1137201.

    Article  PubMed  ADS  CAS  Google Scholar 

  6. F. Rana, IEEE Transactions on Nanotechnology, 7, 91 (2008). doi:10.1109/TNANO.2007.910334.

    Article  Google Scholar 

  7. G. Liang, N. Neophytou, D. E. Nikonov, M. S. Lundstrom, IEEE Trans. Elec. Dev., 54, 657 (2007). doi:10.1109/TED.2007.891872.

    Article  ADS  Google Scholar 

  8. J. R. Williams, L. DiCarlo, C. M. Marcus, Science, 317, 638 (2007). doi:10.1126/science.1144657.

    Article  PubMed  ADS  CAS  Google Scholar 

  9. MC Lemme, TJ Echtermeyer, M Baus, H Kurz, IEEE Electron Device Letters, 28, 4, 284 (2007).

    Article  ADS  Google Scholar 

  10. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nature Materials 6, 652 (2007). doi:10.1038/nmat1967.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004). doi:10.1021/jp040650f.

    Article  CAS  Google Scholar 

  12. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E.H. Conrad, P. N. First, W. A. de Heer, Science, 312, 1191 (2006). doi:10.1126/science.1125925.

    Article  PubMed  ADS  CAS  Google Scholar 

  13. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana and M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008). doi:10.1063/1.2837539.

    Article  ADS  Google Scholar 

  14. D. Sun, Z. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P. First, and T. Norris, arXiv:cond-mat/0803.2883 (2008).

  15. E. Rollings, G.-H. Gweon, S. Zhou, B. Mun, J. McChesney, B. Hussain, A. Fedorov, P. First, W. de Heer, A. Lanzara, J. Phys. Chem. Solids 67, 2172 (2006). doi:10.1016/j.jpcs.2006.05.010.

    Article  ADS  CAS  Google Scholar 

  16. J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, and M.G. Spencer, arXiv:cond-mat/0801.3302 (2008).

  17. S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 36, 1 (2004). doi:10.1002/sia.1601.

    Article  Google Scholar 

  18. E.D. Palik (ed.), Handbook of Optical Constants of Solids (New York: Academic Press, 1991).

  19. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970). doi:10.1063/1.1674108.

    Article  ADS  CAS  Google Scholar 

  20. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). doi:10.1103/PhysRevB.61.14095.

    Article  ADS  CAS  Google Scholar 

  21. B. Hornetz, H-J. Michel and J. Halbritter, J. Mater. Res., 9, 12, 3088 (1994).

    Article  ADS  CAS  Google Scholar 

  22. P. J. Cumpson, Surface and Interface Analysis, 29, 403 (2000). doi:10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8.

    Article  CAS  Google Scholar 

  23. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000). doi:10.1103/PhysRevLett.85.5214.

    Article  PubMed  ADS  CAS  Google Scholar 

  24. J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, I. T. Ferguson, Phys. Rev. B, 59, 11, 7282 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Yang Wu, Kin Fai Mak, Chun Hung Lui, Janina Maultzsch, Tony Heinz, Bul. of Am. Phys. Soc. 53, L29.00006 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shriram Shivaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J.J. et al. Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity. J. Electron. Mater. 38, 725–730 (2009). https://doi.org/10.1007/s11664-009-0803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0803-6

Keywords

Navigation