Skip to main content
Log in

1/f noise in large-area Hg1−xCdxTe photodiodes

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The 1/f noise in photovoltaic (PV) molecular-beam epitaxy (MBE)-grown Hg1−xCdxTe double-layer planar heterostructure (DLPH) large-area detectors is a critical noise component with the potential to limit sensitivity of the cross-track infrared sounder (CrIS) instrument. Therefore, an understanding of the origins and mechanisms of noise currents in these PV detectors is of great importance. Excess low-frequency noise has been measured on a number of 1000-µm-diameter active-area detectors of varying “quality” (i.e., having a wide range of I-V characteristics at 78 K). The 1/f noise was measured as a function of cut-off wavelength under illuminated conditions. For short-wave infrared (SWIR) detectors at 98 K, minimal 1/f noise was measured when the total current was dominated by diffusion with white noise spectral density in the mid-10−15A/Hz1/2 range. For SWIR detectors dominated by other than diffusion current, the ratio, α, of the noise current in unit bandwidth in(f = 1 Hz, Vd = −60 mV, and Δf = 1 Hz) to dark current Id(Vd = −60 mV) was αSW-d = in/Id ∼ 1 × 10−3. The SWIR detectors measured at 0 mV under illuminated conditions had median αSW-P = in/Iph ∼ 7 × 10−6. For mid-wave infrared (MWIR) detectors, αMW-d = in/Id ∼ 2 × 10−4, due to tunneling current contributions to the 1/f noise. Measurements on forty-nine 1000-µm-diameter MWIR detectors under illuminated conditions at 98 K and −60 mV bias resulted in αMW-P = in/Iph = 4.16 ± 1.69 × 10−6. A significant point to note is that the photo-induced noise spectra are nearly identical at 0 mV and 100 mV reverse bias, with a noise-current-to-photocurrent ratio, αMW-P, in the mid 10−6 range. For long-wave infrared (LWIR) detectors measured at 78 K, the ratio, αLW-d = in/Id ∼ 6 × 10−6, for the best performers. The majority of the LWIR detectors exhibited αLW-d on the order of 2 × 10−5. The photo-induced 1/f noise had αLW-P = in/Iph ∼ 5 × 10−6. The value of the noise-current-to-dark-current ratio, α appears to increase with increasing bandgap. It is not clear if this is due to different current mechanisms impacting 1/f noise performance. Measurements on detectors of different bandgaps are needed at temperatures where diffusion current is the dominant current. Excess low-frequency noise measurements made as a function of detector reverse bias indicate 1/f noise may result primarily from the dominant current mechanism at each particular bias. The 1/f noise was not a direct function of the applied bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. D’Souza, L.C. Dawson, S. Marsh, R. Willis, P.S. Wijewarnasuriya, R.E. DeWames, J.M. Arias, J. Bajaj, G. Hildebrandt, and F. Moore, Proc. SPIE Aerosense, Vol. 4369 (Bellingham, WA: SPIE, 2001), p. 157.

    Google Scholar 

  2. J. Bajaj, J.M. Arias, M. Zandian, D.D. Edwall, J.G. Pasko, L.O. Bubulac, and L.J. Kozlowski, J. Electron. Mater. 25, 1394 (1996).

    CAS  Google Scholar 

  3. A.I. D’Souza, L.C. Dawson, C. Staller, P.S. Wijewarnasuriya, R.E. DeWames, W.V. McLevige, J.M. Arias, D. Edwall, and G. Hildebrandt, J. Electron. Mater. 29, 630 (2000).

    CAS  Google Scholar 

  4. A.I. D’Souza, L.C. Dawson, E.J. Anderson, A.D. Markum, W.E. Tennant, L.O. Bubulac, M. Zandian, J.G. Pasko, W.V. McLevige, and D.D. Edwall, J. Electron. Mater. 26, 656 (1997).

    CAS  Google Scholar 

  5. J.M. Arias, J.G. Pasko, M. Zandian, S.H. Shin, G.M. Williams, L.O. Bubulac, R.E. DeWames, and W.E. Tennant, Appl. Phys. Lett. 62, 976 (1993).

    Article  CAS  Google Scholar 

  6. J.M. Arias, J.G. Pasko, M. Zandian, S.H. Shin, G.M. Williams, L.O. Bubulac, R.E. DeWames, and W.E. Tennant, J. Electron. Mater. 22, 1049 (1993).

    CAS  Google Scholar 

  7. J.M. Arias, J.G. Pasko, M. Zandian, J. Bajaj, L.J. Kozlowski, R.E. DeWames, and W.E. Tennant, Proc. SPIE Symp. on Producibility of II–VI Materials and Devices, Vol. 2228 (Bellingham, WA: SPIE, 1994), p. 210.

    Google Scholar 

  8. S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac, and R.E. DeWames, J. Electron. Mater. 22, 1039 (1993).

    CAS  Google Scholar 

  9. H. Holloway, J. Appl. Phys. 49, 4264 (1978).

    Article  Google Scholar 

  10. P.S. Wijewarnasuriya, M. Zandian, D.B. Young, J. Waldrop, D.D. Edwall, W.V. McLevige, J. Arias, and A.I. D’Souza, J. Electron. Mater. 28, 649 (1999).

    Article  CAS  Google Scholar 

  11. A.I. D’Souza, M.G. Stapelbroek, S.A. Masterjohn, P.S. Wijewarnasuriya, R.E. DeWames, and G.M. Williams, Proc. SPIE, Vol. 4721 (Bellingham, WA: SPIE, 2002), p. 227.

    Google Scholar 

  12. S.P. Tobin, S. Iwasa, and T.J. Tredwell, IEEE Trans. Electron. Dev. ED-27, 43 (1980).

    CAS  Google Scholar 

  13. A.I. D’Souza, M.G. Stapelbroek, S.A. Masterjohn, P.S. Wijewarnasuriya, R.E. DeWames, D.S. Smith, and J.C. Ehlert, Proc. SPIE, Vol. 4820 (Bellingham, WA: SPIE, 2003), p. 389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Souza, A.I., Stapelbroek, M.G., Dolan, P.N. et al. 1/f noise in large-area Hg1−xCdxTe photodiodes. J. Electron. Mater. 32, 633–638 (2003). https://doi.org/10.1007/s11664-003-0044-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0044-z

Key words

Navigation