Skip to main content
Log in

Thermodynamic database on microsolders and copper-based alloy systems

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent progress on the thermodynamic databases of calculated phase diagrams in microsolders and Cu-based alloys is presented. A thermodynamic tool, Alloy Database for Microsolders (ADAMIS), is based on comprehensive experimental and thermodynamic data accumulated with the calculation of phase diagrams (CALPHAD) method and contains eight elements, namely, Ag, Bi, Cu, In, Sb, Sn, Zn, and Pb. It can handle all combinations of these elements and all composition ranges. The elements of Al and Au have also been added to ADAMIS within a limited range of compositions. Furthermore, a database of Cu-based alloys, including binary (Cu-X), ternary (Cu-Fe-X, Cu-Ni-X, and Cu-Cr-X), and multicomponent (Cu-Ni-Cr-Sn-Zn-Fe-Si) systems, has also been developed. Typical examples of the calculation and application of these data-bases are presented. These databases are expected to be a powerful tool for the development of Pb-free solders and Cu substrate materials as well as for promoting the understanding of the interfacial phenomena between them in electronic packaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Vianco and D.R. Frear, JOM 45, 14 (1993).

    CAS  Google Scholar 

  2. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    CAS  Google Scholar 

  3. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  4. B. Sundman, B. Jansson, and T.O. Anderson, CALPHAD 9, 153 (1985).

    Article  CAS  Google Scholar 

  5. N. Saunders and A.P. Miodownik, CALPHAD (Oxford, U.K.: Pergamon, 1998).

    Google Scholar 

  6. I. Ohnuma, X.J. Liu, H. Ohtani, and K. Ishida, J. Electron. Mater. 28, 1163 (1999).

    Google Scholar 

  7. I. Ohnuma, X.J. Liu, H. Ohtani, and K. Ishida, Functional Materials, ed. K. Grassie, E. Tenckhoff, G. Wegner, J. Haubell, and H. Hanselka (Weinheim, Germany: Wiley-VCH, 2000), pp. 69–74.

    Chapter  Google Scholar 

  8. X.J. Liu, S.L. Chen, I. Ohnuma, K. Ishida, and Y.A. Chang, Mechanics and Materials Engineering for Science and Experiments, ed. Y.C. Zhou, Y.X. Gu, and Z. Li (New York: Science Press, 2001), pp. 334–337.

    Google Scholar 

  9. C.P. Wang, X.J. Liu, M. Jiang, I. Ohnuma, R. Kainuma, and K. Ishida, to be submitted to J. Phys. Chem. Solids.

  10. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, and R. Schmid-Fetzer, J. Phase Equilibria 22, 373 (2001).

    Article  CAS  Google Scholar 

  11. Y.W. Cui, S. Ishikawa, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida, Mater. Trans. 43, 1879 (2002).

    Article  CAS  Google Scholar 

  12. X.J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, J. Electron. Mater. 31, 1139 (2002).

    CAS  Google Scholar 

  13. X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing, ed. S. Hanada (Sendai, Japan: The Japan Institute of Metals, 2001), pp. 1083–1086.

    Google Scholar 

  14. Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida, J. Electron. Mater. 30, 1120 (2001).

    CAS  Google Scholar 

  15. X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).

    CAS  Google Scholar 

  16. H. Ohtani, I. Satoh, M. Miyashita, and K. Ishida, Mater. Trans. 42, 722 (2001).

    Article  CAS  Google Scholar 

  17. Y. Cui, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida, J. Alloys Compounds 320, 234 (2001).

    Article  CAS  Google Scholar 

  18. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilibria 21, 432 (2000).

    Article  CAS  Google Scholar 

  19. I. Ohnuma, Y. Cui, X.J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater. 29, 1113 (2000).

    Article  CAS  Google Scholar 

  20. I. Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater. 29, 1137 (2000).

    Article  CAS  Google Scholar 

  21. D.V. Malakhov, X.J. Liu, I. Ohnuma, and K. Ishida, J. Phase Equilibria 21, 514 (2000).

    Article  CAS  Google Scholar 

  22. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilibria 23, 236 (2002).

    Article  CAS  Google Scholar 

  23. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilibria 22, 431 (2001).

    Article  CAS  Google Scholar 

  24. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, CALPHAD 24, 149 (2000).

    Article  CAS  Google Scholar 

  25. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, S.M. Hao, and K. Ishida, J. Phase Equilibria 21, 54 (2000).

    Article  Google Scholar 

  26. X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, J. Alloys Compounds 264, 201 (1998).

    Article  CAS  Google Scholar 

  27. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, to be submitted to Metall. Mater. Trans. A.

  28. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, S.M. Hao, and K. Ishida, Z. Metallkd. 89, 828 (1998).

    CAS  Google Scholar 

  29. M. Jiang, C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, G.P. Vassilev, and K. Ishida, to be submitted to J. Phys. Chem. Solids.

  30. J.A.V. Butler, Proc. R. Soc. A135, 348 (1932).

    CAS  Google Scholar 

  31. K.S. Yeum, R. Speiser, and D.R. Poirier, Metall. Trans. B 20B, 693 (1989).

    CAS  Google Scholar 

  32. T. Tanaka and T. Iida, Steel Res. 65, 21 (1994).

    CAS  Google Scholar 

  33. S. Seetharaman and S. Sichen, Metall. Mater. Trans. B 25B, 89 (1993).

    Google Scholar 

  34. J.O. Andesson, L. Hoglund, B. Jonsson, and J. Agren, Fundamental and Application of Ternary Diffusion, ed. G.R. Purdy (New York: Pergamon Press, 1990), p. 153–163.

    Google Scholar 

  35. X.J. Liu, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, J. Iron Steel Int. 6, 333 (2002).

    Google Scholar 

  36. H. Takao and H. Hasegawa, J. Electron. Mater. 30, 1060 (2001).

    CAS  Google Scholar 

  37. K. Suganuma, M. Ueshima, I. Ohnaka, H. Yasuda, J. Zhu, and T. Matsuda, Acta Mater. 40, 4475 (2000).

    Article  Google Scholar 

  38. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 32, 163 (2002).

    Article  CAS  Google Scholar 

  39. M. Ode, S.G. Kim, and T. Suzuki, ISIJ Int. 41, 1076 (2001).

    CAS  Google Scholar 

  40. M. Ode, T. Koyama, H. Onodera, and T. Suzuki, to be submitted to J. Electron. Mater.

  41. S. Hao, K. Anzai, and E. Niyama, Trans. AFS 103, 41 (1995).

    CAS  Google Scholar 

  42. E. Bradley and K. Baerji, IEEE Trans. Comp. Packaging Manuf. Technol. B19, 320 (1996).

    Article  Google Scholar 

  43. S. Kiyono, K. Uenishi, K. Kobayashi, I. Shohji, and M. Yamamoto, J. Jpn. Electron. Packaging 2, 298 (1999).

    CAS  Google Scholar 

  44. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Science 297, 990 (2002).

    Article  CAS  Google Scholar 

  45. PanEngine Software (Madison, WI: CompuTherm LLC).

  46. K. Hashimoto, private communication (2003).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.J., Ohnuma, I., Wang, C.P. et al. Thermodynamic database on microsolders and copper-based alloy systems. J. Electron. Mater. 32, 1265–1272 (2003). https://doi.org/10.1007/s11664-003-0021-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0021-6

Key words

Navigation