Skip to main content
Log in

Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates the electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions by using reaction couple techniques. Three phases, β1-NiZn, γ-Ni5Zn21, and δ-NiZn8 formed in the Zn/Ni couples reacted at 150°C and 200°C for 4 h to 360 h, and the reaction layers grow thicker with longer reaction time. Passage of a 300 A/cm2 current through the Zn/Ni couples has no significant effect upon the interfacial reaction. There is no noticeable difference in the phase formation and layer thickness of the two kinds of Zn/Ni couples with and without the passage of electric currents. Only NiBi3 phase was found in the Bi/Ni couples reacted at 150, 170, 185 and 200°C. Passage of a 300 A/cm2 electric current through the Bi/Ni couples did not change the phase formation, and growth rates of the NiBi3 phase in the couples reacted at 185°C and 200°C were not affected by passage of electric currents either. However, growth rate of the NiBi3 phase was enhanced in the Bi/Ni couples reacted at 150°C and 170°C with the passage of a 300 A/cm2 electric current. A mathematical model was proposed to describe the electromigration effect upon the growth of the intermetallic compounds. Physical parameters in the models were determined by optimization based on experimental measurements, and the results indicate that the values of the apparent effective charge of Bi and Ni decreased sharply with increasing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fick, Annln Phys., 170, 59 (1855).

    Google Scholar 

  2. A.R. Grone, J. Phys. and Chem. Solids, 20, 88 (1961).

    Article  CAS  Google Scholar 

  3. H.B. Huntington and S.C. Ho, J. Phys. Soc. Jpn. 18, 202 (1963).

    CAS  Google Scholar 

  4. R.V. Penney, J. Phys. and Chem. Solids 25, 335 (1964).

    Article  CAS  Google Scholar 

  5. A. Lodding, J. Phys. and Chem. Solids 26, 143 (1965).

    Article  CAS  Google Scholar 

  6. A. Lodding, J. Phys. and Chem. Solids 28, 557 (1967).

    Article  CAS  Google Scholar 

  7. N.V. Doan, J. Phys. and Chem. Solids 31 (1970) 2079.

    Article  Google Scholar 

  8. I. Ames, F.M. d’Heurle, and R.E. Horstmann, Communication, 461 (1970).

  9. G.L. Hofman and A.G. Guy, J. Phys. and Chem. Solids 33, 2167 (1972).

    Article  CAS  Google Scholar 

  10. H.B. Huntington, Diffusion in Solids: Recent Developments, ed. A.S. Nowick and J.J. Burton (New York: Academic Press, 1975), p. 303.

    Google Scholar 

  11. M.Y. Hsieh and H.B. Huntington, J. Phys. and Chem. Solids 39, 867 (1978).

    Article  CAS  Google Scholar 

  12. D.A. Golopentia and H.B. Huntington, J. Phys. and Chem. Solids 39, 975 (1978).

    Article  CAS  Google Scholar 

  13. H. Nakajima and H.B. Huntington, J. Phys. and Chem. Solids 42, 171 (1981).

    Article  CAS  Google Scholar 

  14. C.K. Hu and H.B. Huntingtion, Phys. Rev. B 26, 2782 (1982).

    Article  CAS  Google Scholar 

  15. H.B. Huntington, C.K. Hu, and S.N. Mei, Diffusion in Solids: Recent Developments, ed. M.A. Dayanada and G.E. Murch (Warrendale, PA: TMS, 1984), p. 97.

    Google Scholar 

  16. J. Shi and H.B. Huntingtion, J. Phys. and Chem. Solids 48, 693 (1987).

    Article  CAS  Google Scholar 

  17. S.J. Krumbein, Trans. Components, Hybrids, and Manufacturing Technol. 11, 5 (1988).

    Article  Google Scholar 

  18. C.F. Hong, M. Togo, and K. Hoh, Jpn. J. Appl. Phys., Part 2, Letters 32, L624 (1993).

    Google Scholar 

  19. T. Kwok, Mater. Chem. and Phys. 33, 176 (1993).

    Article  CAS  Google Scholar 

  20. M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki, J. Vac. Sci. & Technol. B 12, 2992 (1994).

    Article  CAS  Google Scholar 

  21. R.E. Hummel, Int. Mater. Rev. 39, 97 (1994).

    CAS  Google Scholar 

  22. C.K. Hu and B. Luther, Mater. Chem. and Phys. 41, 1 (1995).

    Article  CAS  Google Scholar 

  23. J.W. Morris, Jr., C.U. Kim, and S.H. Kang, JOM 48, 43 (1996).

    CAS  Google Scholar 

  24. K.A. Koh and S.J. Chua, J. Electron. Mater. 26, 1070 (1997).

    CAS  Google Scholar 

  25. W.C. Shih and A.L. Greer, Thin Solid Films 292, 103 (1997).

    Article  CAS  Google Scholar 

  26. W.-C. Liu, S.-W. Chen, and C.-M. Chen, J. Electron. Mater. 27, L5 (1998).

    Google Scholar 

  27. S.-W. Chen, C.-M. Chen, and W.-C. Liu, J. Electron. Mater. 27, 1193 (1998).

    CAS  Google Scholar 

  28. C.-M. Chen and S.-W. Chen, J. Electron. Mater. 28, 902 (1999).

    CAS  Google Scholar 

  29. H.W. Wang, B.S. Chiou, and J.S. Jiang, J. Mater. Sci.: Mater. Electron. 10, 267 (1999).

    Article  CAS  Google Scholar 

  30. X.Y. Liu, C.L. Liu, and L.J. Borucki, Acta Materialia 47, 3227 (1999).

    Article  CAS  Google Scholar 

  31. T. Shimozaki and M. Onishi, J. Jpn. Inst. Metals 45, 1221 (1981).

    CAS  Google Scholar 

  32. T.B. Massalski, Binary Alloy Phase Diagram, 2nd ed. (Materials Park, OH: ASM Int., 1990), p. 96.

    Google Scholar 

  33. V.I. Dybkov and O.V. Duchenko, J. Alloys and Compounds 234, 295 (1996).

    Article  CAS  Google Scholar 

  34. O.V. Duchenko and V.I. Dybkov, J. Mater. Sci. Lett. 14, 1725 (1995).

    Article  CAS  Google Scholar 

  35. C.R. Kao, Mater. Sci. and Eng. A 238, 196 (1997).

    Article  Google Scholar 

  36. Z. Marinkovic and V. Simic, Thin Solid Films 98, 95 (1982).

    Article  CAS  Google Scholar 

  37. S.R. Shatynski, J.P. Hirth, and R.A. Rapp, Acta Metall. 24, 1071 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CM., Chen, SW. Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions. J. Electron. Mater. 29, 1222–1228 (2000). https://doi.org/10.1007/s11664-000-0016-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0016-5

Key words

Navigation