Skip to main content
Log in

Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.R. Davis, ed.: ASM Handbook, Heat Treating, vol. 4, ASM International, Materials Park, 1994.

    Google Scholar 

  2. B. Selçuk, R. Ipek, and M.B. Karamiş: J. Mater. Process. Technol., 2003, vol. 141, pp. 189–96.

    Article  Google Scholar 

  3. C. Kanchanomai and W. Limtrakarn: J. Mater. Eng. Perform., 2008, vol. 17, pp. 879–87.

    Article  Google Scholar 

  4. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.

    Article  Google Scholar 

  5. S. Aslanlar, A. Ogur, U. Ozsarac, and E. Ilhan: Mater. Des., 2008, vol. 29, pp. 1427–31.

    Article  Google Scholar 

  6. X.P. Wang, Y.Q. Zhang, J.B. Ju, J.Q. Zhang, and J.W. Yang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 1104–10.

    Article  Google Scholar 

  7. D. Deng: Mater. Des., 2009, vol. 30, pp. 359–66.

    Article  Google Scholar 

  8. L. Cui, H. Fujii, N. Tsuji, and K. Nogi: Scripta Mater., 2007, vol. 56, pp. 637–40.

    Article  Google Scholar 

  9. T. Ogawa, K. Suzuki, and T. Zaizen: Weld. J., 1984, vol. 63, pp. 213–23.

    Google Scholar 

  10. M. Vedani, B. Previtali, G.M. Vimercati, A. Sanvito, and G. Somaschini: Surf. Coat. Technol., 2007, vol. 201, pp. 4518–25.

    Article  Google Scholar 

  11. JIS G 3131: Hot-Rolled Mild Steel Plates, Sheets, and Strips, Japanese Industrial Standards, 2010.

  12. R. Davies and C.G. Smith: Heat Treat. Met., 1978, vol. 5, pp. 3–10.

    Google Scholar 

  13. N. Taweejun and C. Kanchanomai: J. Mater. Eng. Perform., 2015, vol. 24, pp. 4853–62.

    Article  Google Scholar 

  14. M. Pouranvari, S.M. Mousavizadeh, S.P.H. Marashi, M. Goodarzi, and M. Ghorbani: Mater. Des., 2011, vol. 32, pp. 1390–8.

    Article  Google Scholar 

  15. AWS D8.9M: Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, American Welding Society, 2012.

  16. H.S. Choi, G.H. Park, W.S. Lim, and B.M. Kim: J. Mech. Sci. Technol., 2011, vol. 25, pp. 1543–50.

    Article  Google Scholar 

  17. G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.

    Article  Google Scholar 

  18. M. Pouranvari: Int. J. Multidiscip. Sci. Eng., 2011, vol. 2, pp. 63–7.

    Google Scholar 

  19. M. Pouranvari: Arch. Metall. Mater., 2013, vol. 58, pp. 67–72.

    Google Scholar 

  20. S. Dancette, V. Massardier, J. Merlin, D. Fabrègue, and T. Dupuy: 6th Int. Conf. Process. Manuf. Adv. Mater., THERMEC2009, 2010, pp. 130–35.

  21. S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy, and M. Bouzekri: Eng. Fract. Mech., 2011, vol. 78, pp. 2259–72.

    Article  Google Scholar 

  22. A.A. Mottahedi and M. Mottahedi: 12th Int. Conf. Fract., ICF-122009, 2009, pp. 7340–46.

  23. I. Mitelea and C.M. Craciunescu: Mater. Des., 2010, vol. 31, pp. 2181–6.

    Article  Google Scholar 

  24. L. Zhao, Z.I. Tian, Y. Peng, Y. Qi, and Y.J. Wang: J. Iron Steel Res. Int., 2007, vol. 14, pp. 259–62.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from Dr. Patiphan Juijerm (Kasetsart University, Thailand), the Thailand Research Fund, the Thailand Commission on Higher Education of Thailand (National Research University Project), the National Research Council of Thailand (NRCT), and the National Metal and Materials Technology Center (MTEC, Thailand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaosuan Kanchanomai.

Additional information

Manuscript submitted March 10, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taweejun, N., Poapongsakorn, P. & Kanchanomai, C. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels. Metall Mater Trans B 48, 1174–1187 (2017). https://doi.org/10.1007/s11663-017-0927-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0927-7

Keywords

Navigation