Skip to main content
Log in

Facile Synthesis of Nb3Sn Via a Hydrogen Reduction Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A controllable and facile process for the preparation of Nb3Sn intermetallic compound nanopowders using NbCl5 and SnCl2 vapors reduced by hydrogen has been developed. The vaporizing rates of the two chlorides are controlled by measuring their mass loss as a function of carrier gas (argon) flow rate at certain vaporization temperatures, respectively. X-ray diffraction (XRD) patterns indicate that hydrogenous Nb3Sn products are obtained under the vaporizing rate of 0.155 g min−1 for NbCl5 and 0.036 g min−1 for SnCl2 with the hydrogen flow rate of 2100 ml min−1 at 1273 K (1000 °C). Results of semi-quantitative analysis by X-ray fluorescence (XRF) demonstrate that the atomic ratio of Nb to Sn in the as-synthesized products is 3.48:1, and the content of (Nb + Sn) is taken up to 89.61 wt pct from the total weight of the products. The products can be purified by vacuum heat treatment. Images of transmission electron microscopy (TEM) show that the products are homogenous particles with a mean diameter of 31 nm. In addition, the reaction ratio of the chlorides and the powder yield are controllable by hydrogen flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] A. Godeke: Supercond. Sci. Technol., 2006, vol. 19, pp. R68─R80.

    Article  Google Scholar 

  2. [2] F. Liu, H. Liu, S. Liu, B. Liu, L. Lei, C. Chen, and Y. Wu: Fusion Sci. Technol., 2014, vol. 66, pp. 208─13.

    Article  Google Scholar 

  3. [3] E. Barzi, D. Turrioni, and A.V. Zlobin: IEEE Trans. Appl. Supercond., 2014, vol. 24, pp. 6000808.

    Article  Google Scholar 

  4. [4] C. Senatore and R. Flukiger: Appl. Phys. Lett., 2013, vol. 102, pp. 012601.

    Article  Google Scholar 

  5. [5] P.X. Zhang, K. Zhang, J.H. Guo, J.J. Jia, X.D. Tang, J.F. Li, J.W. Liu, S.J. Du, X.H. Liu, and Y. Feng: IEEE T. Appl. Supercond., 2012, vol. 22, pp. 4802704.

    Article  Google Scholar 

  6. [6] I. Pong, L.R. Oberli, and L. Bottura: Supercond. Sci. Tech., 2013, vol. 26, pp. 105002.

    Article  Google Scholar 

  7. [7] S. Ochiai and L. Osamura: Acta Metall., 1986, vol. 34, pp. 2425─33.

    Article  Google Scholar 

  8. [8] X. Xu, M. Sumption, X. Peng, and E.W. Collings: Appl. Phys. Lett., 2014, vol. 104, pp. 082602.

    Article  Google Scholar 

  9. [9] M.J.R. Sandim, D. Stamopoulos, E. Aristomenopoulou, S. Zaefferer, D. Raabe, S. Awaji, and K. Watanabe: Physics Procedia., 2012, vol. 36, pp. 1504─09.

    Article  Google Scholar 

  10. [10] M. López, J.A. Jiménez, K. Ramam, and R.V. Mangalaraja: J. Alloy Compd., 2014, vol. 612, pp. 215─20.

    Article  Google Scholar 

  11. [11] R.O. Suzuki, H. Nagai, T. Oishi, and K. Ono: J. Mater. Sci., 1987, vol. 22, pp. 1999─2005.

    Article  Google Scholar 

  12. [12] Q. Xu, C. Schwandt, and D.J. Fray: Adv. Mater. Res., 2011, vol. 160, pp. 1131─35.

    Google Scholar 

  13. [13] K.Y. Park, H.J. Kim, and Y.J. Suh: Powder Technol., 2007, vol. 172, pp. 144─48.

    Article  Google Scholar 

  14. [14] M.T. Swihart: Curr. Opin. Colloid Interface Sci., 2003, vol. 8, pp. 127─33.

    Article  Google Scholar 

  15. [15] J. Lu, M. Hu, Y. Tian, C. Guo, S. Guo, and Q. Liu: J. Nanosci. Nanotechno., 2013, vol. 13, pp. 914─18.

    Article  Google Scholar 

  16. [16] A. Govindaraj, S.R.C. Vivekchand, and C.N.R. Rao: J. Nanosci. Nanotechno., 2007, vol. 7, pp. 1695─702.

    Article  Google Scholar 

  17. [17] Y. Xing and D.E. Rosner: J. Nanopart. Res., 1999, vol. 1, pp. 277─91.

    Article  Google Scholar 

  18. [18] T. Thurakitseree, E. Einarsson, R. Xiang, P. Zhao, S. Aikawa, S. Chiashi, J. Shiomi, and S. Maruyama: J. Nanosci. Nanotechno., 2012, vol. 12, pp. 370─76.

    Article  Google Scholar 

  19. [19] D. Su, M. Ren, X.A. Li, and W. Huang: J. Nanosci. Nanotechno., 2013, vol. 13, pp. 6471─84.

    Article  Google Scholar 

  20. [20] A. Kato, T. Watari, and T. Nakamatsu: J. Less Common Met., 1982, vol. 83, pp. 227─34.

    Article  Google Scholar 

  21. [21] J.J. Hanak, K. Strater, and G.W. Cullen: RCA Rev., 1964, vol. 25, pp. 342─65.

    Google Scholar 

  22. [22] H. Yorucu and F.R. Sale: Metall. Mater. Trans. B, 1982, vol. 13B, pp. 625─31.

    Article  Google Scholar 

  23. [23] Z.M. Cao, J. Zhu, H.Z. Zhu, and Z.Y. Qiao: Chinese Journal of Rare Metals, 2008, vol. 32, pp. 478─81. [in Chinese].

    Google Scholar 

  24. [24] S.E. Pratsinis and S. Vemury: Powder Technol., 1996, vol. 88, pp. 267─73.

    Article  Google Scholar 

  25. [25] M. Bakhshi and B. Mobasher: Cem. Concr. Compos., 2011, vol. 33, pp. 474─84.

    Article  Google Scholar 

  26. [26] Y. Qin and J.E. Hiller: Mater. Struct., 2014, vol. 47, pp. 351─65.

    Article  Google Scholar 

  27. [27] A.C. Garrabrants and D.S. Kosson: Drying Technol., 2003, vol. 21, pp. 775─805.

    Article  Google Scholar 

  28. C.Z. Chen: Non-ferrous Metal Smelting and Casting, Metallurgical Industry Press, Beijing, 2003, p. 19. [in Chinese].

    Google Scholar 

  29. [29] A.V. Skripov, M.Y. Belyaev, and V.E. Arkhipov: J. Alloy Compd., 1995, vol. 229, pp. 248─53.

    Article  Google Scholar 

  30. [30] M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y.S. Morsi: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1155─65.

    Article  Google Scholar 

  31. [31] C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671─75.

    Article  Google Scholar 

  32. [32] Y.J. Suh, H.D. Jang, H.K. Chang, D.W. Hwang, and H.C. Kim: Mater. Res. Bull., 2005, vol. 40, pp. 2100─09.

    Article  Google Scholar 

  33. [33] J. Zhu, K. Huang, J. Hou, and H. Zhu: T. Nonferr. Metal. Soc., 2014, vol. 24, pp. 3987─93.

    Article  Google Scholar 

Download references

Acknowledgment

The financial support from the National Natural Science Foundation of China (NSFC; No. 51472027) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqiang Jiao or Hongmin Zhu.

Additional information

Manuscript submitted October 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Jiao, S., Zhang, L. et al. Facile Synthesis of Nb3Sn Via a Hydrogen Reduction Process. Metall Mater Trans B 48, 286–293 (2017). https://doi.org/10.1007/s11663-016-0812-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0812-9

Keywords

Navigation