Skip to main content
Log in

Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Gou, M. Zhang, H. Chen, J. Chen, P. Li, and Y.P. Yang: Mater. Des., 2015, vol. 85, pp. 309-17.

    Google Scholar 

  2. J.M. Sun, X.Z. Liu, Y.G. Tong, and D. Deng: Mater. Des., 2014, vol. 63, pp. 519-30.

    Article  Google Scholar 

  3. S.H. Yan, Y. Nie, Z.T. Zhu, H. Chen, G.Q. Gou, J.P. Yu, and G.G. Wang: Appl. Surf. Sci., 2014, vol. 298, pp. 12-8.

    Article  Google Scholar 

  4. S.H. Yan, H. Chen, Z.T. Zhu, and G.Q. Gou: Mater. Des., 2014, vol. 61, pp. 160-7.

    Article  Google Scholar 

  5. P. Colegrove, C. Ikeagu, A. Thistlethwaite, S. Williams, T. Nagy, W. Suder, A. Steuwer, and T. Pirling: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 717-25.

    Article  Google Scholar 

  6. M.N. James, P.J. Webster, D.J. Hughes, Z. Chen, N. Ratel, S.P. Ting, G. Bruno, and A. Steuwer: Mater. Sci. Eng. A, 2006, vol. 427, pp. 16-26.

    Article  Google Scholar 

  7. W. Liang, H. Murakawa, and D. Deng: Mater. Des., 2015, vol. 67, pp. 303-12.

    Article  Google Scholar 

  8. M.N. James, D.J. Hughes, D.G. Hattingh, G. Mills, and P.J. Webster: Int. J. Fatigue, 2009, vol. 31, pp. 28-40.

    Article  Google Scholar 

  9. H.S. Bang, H.S. Bang, Y.C. Kim, and S.M. Joo: Comput. Mater. Sci., 2010, vol. 49, pp. 217-21.

    Article  Google Scholar 

  10. N.S. Ma, L.Q. Li, H. Huang, S. Chang, and H. Murakawa: J. Mater. Process. Technol., 2015, vol. 220, pp. 36-45.

    Article  Google Scholar 

  11. C. Morgenstern, C.M. Sonsino, A. Hobbacher, and F. Sorbo: Int. J. Fatigue, 2006, vol. 28, pp. 881-90.

    Article  Google Scholar 

  12. F. Lefebvre and I. Sinclair: Mater. Sci. Eng. A, 2005, vol. 407, pp. 265-72.

    Article  Google Scholar 

  13. B. Hu and I.M. Richardson: Mater. Sci. Eng. A, 2007, vol. 459, pp. 94-100.

    Article  Google Scholar 

  14. C. Zhang, M. Gao, G. Li, C. Chen, and X.Y. Zeng: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 703-10.

    Article  Google Scholar 

  15. Wang, H. Chen, Z. Zhu, P. Qiu, and Y. Cui: Int. J. Adv. Manuf. Technol., 2016.

  16. A.L. Biro, B.F. Chenelle, and D.A. Lados: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1622-37.

    Article  Google Scholar 

  17. G. Pouget and A.P. Reynolds: Int. J. Fatigue, 2008, vol. 30, pp. 463-72.

    Article  Google Scholar 

  18. L. Fratini, S. Pasta, and A.P. Reynolds: Int. J. Fatigue, 2009, vol. 31, pp. 495-500.

    Article  Google Scholar 

  19. G. Bussu and P.E. Irving: Int. J. Fatigue, 2003, vol. 25, pp. 77-88.

    Article  Google Scholar 

  20. C.D.M. Liljedahl, O. Zanellato, M.E. Fitzpatrick, J. Lin, and L. Edwards: Int. J. Fatigue, 2010, vol. 32, pp. 735-43.

    Article  Google Scholar 

  21. M.B. Prime, T. Gnaupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, and R.J. Sebring: Acta Mater., 2006, vol. 54, pp. 4013-21.

    Article  Google Scholar 

  22. S. Ganguly, V. Stelmukh, L. Edwards, and M.E. Fitzpatrick: Mater. Sci. Eng. A, 2008, vol. 491, pp. 248-57.

    Article  Google Scholar 

  23. C.D.M. Liljedahl, J. Brouard, O. Zanellato, J. Lin, M.L. Tan, S. Ganguly, P.E. Irving, M.E. Fitzpatrick, X. Zhang, and L. Edwards: Int. J. Fatigue, 2009, vol. 31, pp. 1081-8.

    Article  Google Scholar 

  24. Y.E. Ma, P. Staron, T. Fischer, and P.E. Irving: Int. J. Fatigue, 2011, vol. 33, pp. 1417-25.

    Article  Google Scholar 

  25. B. Ribic, T.A. Palmer, and T. DebRoy: Int. Mater. Rev., 2009, vol. 54, pp. 223-44.

    Article  Google Scholar 

  26. S. Kou: Welding Metallurgy. 2nd ed., Wiley, New York, NY, 2003, pp. 13-126.

    Google Scholar 

  27. H.S. Bang, H.S. Bang, Y.C. Kim, and I.H. Oh: Mater. Des., 2011, vol. 32, pp. 2328-33.

    Article  Google Scholar 

  28. X. Zhang, B. Liu, Y. Liu, H. Li, and H. Li: Chin. J. Nonferrous Met., 2007, vol. 17, pp. 1561-6.

    Google Scholar 

  29. S.K. Khanna, X. Long, W.D. Porter, H. Wang, C.K. Liu, M. Radovic, and E. Lara-Curzio: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 82-7.

    Article  Google Scholar 

  30. K. Deplus, A. Simar, W. Van Haver, and B. de Meester: Int. J. Adv. Manuf. Techol., 2011, vol. 56, pp. 493-504.

    Article  Google Scholar 

  31. A. Bastier, M.H. Maitournam, F. Roger, and K. Dang Van: J. Mater. Process. Technol., 2008, vol. 200, pp. 25-37.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, Grant No. 2014CB660807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chen.

Additional information

Manuscript submitted March 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, H., Qiu, P. et al. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4. Metall Mater Trans B 48, 591–601 (2017). https://doi.org/10.1007/s11663-016-0782-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0782-y

Keywords

Navigation