Skip to main content
Log in

Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1. J.C. Wang, N. Ma, H. Murakawa, B. Teng, S. Yuan, Mater Des., 2011, 32, 4728- 4737.

    Article  Google Scholar 

  2. 2. D. Deng, H. Murakawa, W. Liang, Comp. Methods Appl. Mech. Eng. 2007, 196, 4613–4627.

    Article  Google Scholar 

  3. 3. J. Goldak, A. Chakravarti, M. Bibbi, Metall. Trans. B, 1984, 15B, 299-305.

    Article  Google Scholar 

  4. 4. H. Nishikawa, H. Serizawa, H. Murakawa, Quart. J. Jpn. Weld. Soc. 2006, 24 (2), 168–173.

    Article  Google Scholar 

  5. 5. Y. Ueda, and T. Yamakawa, Trans. Jpn. Weld. Soc. 1971, 12 (2), 90–100.

    Google Scholar 

  6. 6. H. Murakawa, Y. Luo, and Y. Ueda, J. Soc. Nav. Architects Jpn. 1996, 180, 739–751.

    Article  Google Scholar 

  7. Y. Luo, H. Murakawa, andY. Ueda, J. Soc. Nav. Architects Jpn. 1997, 182, 783–793

    Article  Google Scholar 

  8. 8. D. Deng, W. Liang, and H. Murakawa, J Mater Process Technol., 2007, 183, 219-225.

    Article  Google Scholar 

  9. 9. D. Deng, H. Murakawa, and W. Liang, J Mater Process Technol., 2008, 203, 252-266.

    Article  Google Scholar 

  10. 10. D. Deng, H. Murakawa, M. Shibahara, Comp Mater Sci., 2010, 48, 187-194.

    Article  Google Scholar 

  11. 11. H. Long, D. Gery b, A. Carlier, P.G. Maropoulos, Mater. Des., 2009, 30, 4126–4135.

    Article  Google Scholar 

  12. 12. Dean Deng, Mater. and Des., 2009, 30, 359–366.

    Article  Google Scholar 

  13. M. Vasudevan, Mater. Manufac. Process., 2009, 24(2), pp. 209–18.

    Article  Google Scholar 

  14. Pradip Ghanty, Samrat Paul, D. P. Mukherjee, M. Vasudevan, Nikhil R. Pal and A.K. Bhaduri, Sci. and Technol. of Weld. Join., 2007, 12(7), 649–58

    Article  Google Scholar 

  15. Pradip Ghanty, M. Vasudevan, N. Chandrasekhar, Dipti Mukherjee, V. Maduraimuthu, N.R. Pal, A.K. Bhaduri, P. Bharat, and Baldev Raj, Sci. and Technol. of Weld. Join., 2008, 13 (4), 395–401

    Article  Google Scholar 

  16. M. Vasudevan, M. Murugananth, A.K. Bhaduri, Baldev Raj and K. Prasad Rao, Sci. and Technol. of Weld. Join. 2004, 9 (2),109–20

    Article  Google Scholar 

  17. M. Vasudevan, A.K. Bhaduri, Baldev Raj and K. Prasad Rao, Mater. Sci. Tech. 2007, 23 (4), 451–59

    Article  Google Scholar 

  18. K. Manikya Kanti, and P. Srinivasa Rao, J. of Mater. Process. Tech., 2008, 200, 300–05.

    Article  Google Scholar 

  19. 19. S. Kumanan, and R. Kumar, Int J Adv Manuf Technol 2007, 31, 1083–91.

    Article  Google Scholar 

  20. D. Nagesh, G. Datta, J Mater Process Techno 2002, 23, 303–12.

    Article  Google Scholar 

  21. S. Chokkalingham, N. Chandrasekhar, M. Vasudevan, J Intell Manuf 2012, 23, 1995–2001.

    Article  Google Scholar 

  22. M. Ahmadzadeh, A.HoseiniFard, B.Saranjam, H.R.Salimi, NDT&E International 2012, 52, 136–43.

    Article  Google Scholar 

  23. Dong Hyuk Lim, In Ho Bae, Man Gyun Na, Jin Weon Kim, Nucl. Engi. Des. 2010, 240, 2555–64.

    Article  Google Scholar 

  24. M.P. Lightfoot, G.J. Bruce, N.A. McPherson and K. Woods, Sci. Technol. Weld. Join., 2005, 10(2), 187–89.

    Article  Google Scholar 

  25. M. Seyyedian Choobi, M. Haghpanahi and M. Sedighi, Comp Mater Sci, 2012, 62, 152–59

    Article  Google Scholar 

  26. Z. Quan, Z. Gao, Q. Wang, X. Wen: SAE Int. J. Mater. Manuf., 2014-01-0755.

  27. C. Liu, J.X. Zhang, C.B. Xue, Fusion Engg. Des., 2011, 86, 288–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vasudevan.

Additional information

Manuscript submitted on November 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanareddy, V.V., Chandrasekhar, N., Vasudevan, M. et al. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates. Metall Mater Trans B 47, 702–713 (2016). https://doi.org/10.1007/s11663-015-0468-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0468-x

Keywords

Navigation