Skip to main content
Log in

Study of Solidification and Heat Transfer Behavior of Mold Flux Through Mold Flux Heat Transfer Simulator Technique: Part II. Effect of Mold Oscillation on Heat Transfer Behaviors

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Mold flux solidification and heat transfer experiments under both non-oscillation and oscillation modes have been conducted and compared with the help of Mold Flux Heat Transfer Simulator (MFHTS) technique. The results suggested that the steady-state responding heat flux in the mode of oscillation is smaller than that in non-oscillation operation, and a transition time is observed in the responding temperature and heat flux profiles during the oscillation experiments. The oscillation of mold would introduce the roughness of slag film surface and the enlargement of air gap at the interface of mold/flux film; thus, the interfacial thermal resistance was enhanced. In addition, the thermal conductivity of solid crystalline mold flux and mold/flux film interfacial thermal resistance at steady state were calculated in this work. The thermal conductivity of crystalline mold flux was about 1.43 to 1.76 W m−1 K−1, and the interfacial thermal resistance R int in oscillation operation was calculated as 17.3 to 22.5 × 10−4 m2 (K W−1) in the measured region. The obtained interfacial thermal resistance R int in this work is higher than that in non-oscillation operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  Google Scholar 

  2. A. Grill, J. K. Brimacombe: Ironmak. Steelmak., 1976, 3(2):76–77.

    Google Scholar 

  3. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48 (5), pp. 446–53.

    Article  Google Scholar 

  4. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–62.

    Article  Google Scholar 

  5. Y. Meng and B.G. Thomas: ISIJ Int., 2006, vol. 46 (5), pp. 660–69.

    Article  Google Scholar 

  6. A. Yamauchi, K. Sorimachi, T. Sakuraya, and T. Fujii: ISIJ Int., 1993, vol. 33 (1), pp. 140–47.

    Article  Google Scholar 

  7. M. Susa, A. Kushimoto, H. Toyota, M. Hayashi, R. Endo, and Y. Kobayashi: ISIJ Int., 2009, vol. 49 (11), pp. 1722–29.

    Article  Google Scholar 

  8. S. Ohmiya, K. H. Tacke and K. Schwerdtfeger: Ironmaking Steelmaking, 1983, vol. 10, pp. 24–30

    Google Scholar 

  9. A. Yamauchi, K. Sorimachi, T.Sakuraya and T. Fujii: ISIJ Int., 1993, vol. 33 (1), pp. 140–47.

    Article  Google Scholar 

  10. J. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38 (5), pp. 440–46.

    Article  Google Scholar 

  11. J. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38 (8), pp. 834–42.

    Article  Google Scholar 

  12. S. Ohmiya, K. T. Tacke and K. Schwerdtfeger: Ironmaking Steelmaking, 1983, vol. 10 (1), pp. 24–30.

    Google Scholar 

  13. J. Holzhauzer, K. Spitzer and K. Schwerdtfeger: Steel Research, 1999, vol. 70 (7) 252-258.

    Google Scholar 

  14. H. Shibata, K. Kondo, M. Suzuki, and T. Emi: ISIJ Int., 1996, vol. 36, supplement, pp. S179–82.

    Article  Google Scholar 

  15. Y. Vermeulen, E. Divry and M. Rigaud: Can. Metall. Q., 2004, vol. 43, pp. 527–34.

    Article  Google Scholar 

  16. S. Ozawa, M. Susa, T. Goto, R. Endo, and K.C. Mills: ISIJ Int., 2006, vol. 46 (3), pp. 413–19.

    Article  Google Scholar 

  17. K. Nishioka, T. Maeda and M. Shimizu: ISIJ Int., 2006, vol. 46 (3), pp. 427–33.

    Article  Google Scholar 

  18. J. Diao, B. Xie, J.P. Xiao, and C.Q. Ji: ISIJ Int., 2009, vol. 49 (11), pp. 1710–14.

    Article  Google Scholar 

  19. W. Wang, L. Zhou, and K. Gu: Met. Mater. Int., 2010, vol. 16 (6), pp. 913–20.

    Article  Google Scholar 

  20. W. Wang and A.W. Cramb: ISIJ Int., 2005, vol. 45 (12), pp. 1864–70.

    Article  Google Scholar 

  21. K. Gu, W. Wang, J. Wei, H. Matsuura, F. Tsukihashi, I. Sohn, and D.J. Min: Metall. Mater. Trans. B, 2012, vol. 43 (6), pp. 1393–404.

    Article  Google Scholar 

  22. G. Wen, P. Tang, B. Yang and X. Zhu: ISIJ Int., 2012, vol. 52 (7), pp. 1179–85.

    Article  Google Scholar 

  23. I.V. Samarasekera and C. Chow: in Continuous Casting of Steel Billets, vol. 11, Chap. 17, A.W. Cramb, ed., The AISE Steel Foundation, Pittsburgh, PA, 2003 p. 15.

  24. J.A. Kromhout: Ph.D. Doctoral Thesis, Technical University Delft, Delft, Netherlands, 2011, p. 2.

  25. Y. Liu, W. Wang, F. Ma, and H. Zhang: Metall. Mater. Trans. B, 2015. doi:10.1007/s11663-015-0318-x.

  26. C. Cicutti, Y. Kashiwaya, and A.W. Cramb: CISR Progress Report, Carnegie Mellon University, Pittsburgh, PA, November 1997, pp. 127–63.

  27. H. Ryu, Z. Zhang, J. Cho, G. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50 (8), pp. 1142–50.

    Article  Google Scholar 

  28. H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46 (3), 441–49.

    Article  Google Scholar 

  29. K. Gu, W. Wang, L. Zhou, F. Ma, and D. Huang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 937–45.

    Article  Google Scholar 

  30. A. Yamauchi, K. Sorimachi, T. Sakuraya, and T. Fujii: ISIJ Int., 1993, vol. 33, pp. 140-47.

    Article  Google Scholar 

  31. K. Watanabe, H. Okamoto, M. Suzuki, H. Kondo, and T. Shiomi: 79th Steelmaking and 55th Ironmaking Conf., ISSAIME, Pittsburgh, 1996, p. 92.

  32. M. Hanao, and M. Kawamoto: ISIJ Int., 2008, vol. 48 (2), pp. 180–85.

    Article  Google Scholar 

  33. M. Hanao, M. Kawamoto, and A. Yamanaka: ISII Int., 2012, vol. 52 (7), pp. 1310–19.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from NSFC (51274244, 51322405) and the Natural Science Foundation of Hunan Province China (Grant No. S2015J504I) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted April 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Liu, Y., Wang, W. et al. Study of Solidification and Heat Transfer Behavior of Mold Flux Through Mold Flux Heat Transfer Simulator Technique: Part II. Effect of Mold Oscillation on Heat Transfer Behaviors. Metall Mater Trans B 46, 1902–1911 (2015). https://doi.org/10.1007/s11663-015-0367-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0367-1

Keywords

Navigation