Skip to main content
Log in

Effects of CaO/CaCO3 on the Carbothermic Reduction of Titanomagnetite Ores

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite (TTM) ores were investigated from a kinetic viewpoint in the temperature range of 1273 K to 1423 K (1000 °C to 1150 °C) by employing thermogravimetric analysis (TGA) and quadruple mass spectrometry (QMS). The method of evaluating the reduction progress of TTM and char by TGA was compared with that calculated using the oxygen amount combined with Fe in the reduced TTM. Improved reducibility of TTM by adding CaO was explained by the variation of rates of reduction and gasification which was evaluated using QMS data. The activation energy for the carbothermic reduction of TTM was greatly decreased by adding CaO, which is ascribed to the formation of CaO·SiO2 improving the reducibility of TTM. The activation energy for the carbothermic reduction of TTM containing CaCO3 was further decreased, which is due to the activation of char gasification by CO2 supplied from CaCO3 in addition to the contribution of CaO to the increase of TTM reducibility. It is believed that the admixing of CaO/CaCO3 to TTM would play a predominant role in controlling the reduction rate and the final metallization degree of TTM in direct reduction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Inaba: Tetsu-to-Hagane, 2001, vol. 87 (5), pp. 221-27.

    Google Scholar 

  2. F. Globler and R.C.A. Minnitt: J. S. Afr. Inst. Min. Metall., 1999, pp. 111–16.

  3. Y. K. Rao: Metallurgical Transactions, 1971, vol. 2 (May), pp. 1439-47.

    Google Scholar 

  4. R. J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279-86.

    Article  Google Scholar 

  5. T. Szendrei and P.C.V. Berge: Thermochimica Acta, 1981, vol. 44, pp. 11-19.

    Article  Google Scholar 

  6. J. S. J. Van Deventer and P. R. Visser: Thermochimica Acta, 1987, vol. 111, pp. 89-102.

    Article  Google Scholar 

  7. D. Chen, B. Song, L. Wang, T. Qi, Y. Wang and W. Wang: Minerals Eng., 2011, vol. 24, pp. 864-69.

    Article  Google Scholar 

  8. E. Park and O. Ostrovski: ISIJ Int., 2003, vol. 43 (9), pp. 1316-25.

    Article  Google Scholar 

  9. S. -M. Jung: ISIJ Int., 2013, vol. 53 (8), pp. 1487-89.

    Article  Google Scholar 

  10. A.K. Viswas: Principles of Blast Furnace Ironmaking, SBA Pub., Calcutta, India, 1981, p. 41; p. 234; p. 289.

  11. D. W. McKee: Carbon, 1982, vol. 20 (1), pp. 59-66.

    Article  Google Scholar 

  12. L. L. Zhou and F. H. Zeng: Advanced Materials Research, 2010, vol. 97, pp. 465-71.

    Article  Google Scholar 

  13. Y. Kashiwaya, M. Kanbe and K. Ishii: ISIJ Int., 2001, vol. 41 (8), pp. 818-26.

    Article  Google Scholar 

  14. Y. Kashiwaya, M. Kanbe and K. Ishii: ISIJ Int., 2006, vol. 46 (11), pp. 1610-17.

    Article  Google Scholar 

  15. D. R. Gaskell: Introduction to the Thermodynamics of Materials, 4th ed., Taylor & Francis, Washington DC, 2003, pp. 582-83.

    Google Scholar 

  16. R. J. Fruehan: The Making, Shaping and Treating of Steel, Steelmaking and Refining Volume, 11th ed., AISE Steel Foundation, Pittsburgh, 1998, pp. 20-21.

    Google Scholar 

  17. E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, London, 1980, p. 5.

    Google Scholar 

  18. S. -M. Jung and S. H. Yi: Iromak. Steelmak., 2014, vol. 41 (1), pp. 38-46.

    Article  Google Scholar 

  19. S. -M. Jung: ISIJ Int., 2014, vol. 54 (4), pp. 781-90.

    Article  Google Scholar 

  20. T. Coetsee, P. C. Pistorius and E. E. de. Villiers: Miner. Eng., 2002, vol. 15, pp. 919–29.

  21. L. v. Bogdandy, P. Dickens, W. v. D. Esche and J. Willems: Stahl u. Eisen, 1963, vol. 83, pp. 129–39.

  22. A. E. Newkirk: Analytical Chemistry, 1960, vol. 32 (12), pp. 1558-63.

    Article  Google Scholar 

  23. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. -H. Jung, Y. -B. Kang, J. Melançon, A. D. Pelton, C. Robelin and S. Petersen: CALPHAD, 2009, vol. 33 (2), pp. 295-311.

    Article  Google Scholar 

  24. K. Otsuka and D. Kunii: J. Chem. Eng. Jpn., 1969, vol. 2 (1), pp. 46-50.

    Article  Google Scholar 

  25. A. Chatterjee: Beyond the Blast Furnace, CRC Press, Inc., Boca Raton, USA, 1994, pp. 19-21.

    Google Scholar 

  26. D. W. McKee: Fuel, 1983, vol. 62, pp. 170-75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Manuscript submitted February 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SM. Effects of CaO/CaCO3 on the Carbothermic Reduction of Titanomagnetite Ores. Metall Mater Trans B 46, 1162–1174 (2015). https://doi.org/10.1007/s11663-015-0341-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0341-y

Keywords

Navigation