Skip to main content
Log in

Effect of P2O5 and FetO on the Viscosity and Slag Structure in Steelmaking Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present paper investigates the influence of P2O5 and FetO on the viscosity and structure of steelmaking slags. An understanding of the viscous behavior and structure of FetO-bearing smelting slags is essential to control the dephosphorization in steelmaking process and to efficiently recycle the phosphorus from steelmaking slags. It is found that the viscosity of CaO-SiO2-Al2O3-MgO-FetO-P2O5 slags slightly increases with increasing P2O5 content, while the viscosity decreases with increasing FetO content. The degree of the polymerization of quenched slags, determined from Raman spectra, is found to increase with increasing P2O5 content and decrease with increasing FetO content. It is also noted that the peaks of Raman spectra between 800 and 1200 cm−1 were nearly absent at the FetO content of 22.46 wt pct; whereas according to 29Si MAS-NMR and FTIR analysis, it is clearly seen that the [SiO4]-tetrahedra-related peaks existed even for the same slag. This may confirm that small quantities of extra-framework iron species can absorb the Raman scattering and damp the Raman signal intensity and the presence of FetO in the slag does not necessarily eliminate [SiO4]-tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Das, S. Prakash, P. Reddy, and V. Misra: Resour. Conserv. Recy., 2007, vol. 50, pp. 40-57.

    Article  Google Scholar 

  2. L. Lin, Y.P. Bao, M. Wang, W. Jiang, and H.M. Zhou: J. Iron Steel Res. Int., 2014, vol. 21, pp. 496-502.

    Article  Google Scholar 

  3. L. Lin, Y.P. Bao, M. Wang, and H.M. Zhou: Ironmak. Steelmak., 2014, vol. 41, pp. 193-198.

    Article  Google Scholar 

  4. J. Diao, B. Xie, Y. Wang, and X. Guo: ISIJ Int., 2010, vol. 50, pp. 768-770.

    Article  Google Scholar 

  5. M.Y. Wang, L.N. Zhang, L. Zhang, Z.T. Sui, and G.F. Tu: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 421-425.

    Article  Google Scholar 

  6. Y.Q. Sun, J. Li, X.D. Wang, and Z.T. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1446-1455.

    Article  Google Scholar 

  7. L. Lin, Y.P. Bao, M. Wang, H.M. Zhou, and L. Zhang: Ironmak. Steelmak., 2013, vol. 40, pp. 521-527.

    Article  Google Scholar 

  8. E.T. Turkdogan: Physical chemistry of high temperature technology, Academic Press, New York 1980.

    Google Scholar 

  9. M.J. Toplis, D.B. Dingwell, and G. Libourel: Contrib. Mineral. Petrol., 1994, vol. 117, pp. 293-304.

    Article  Google Scholar 

  10. D. Li, M.E. Fleet, G.M. Bancroft, M. Kasrai, and Y. Pan: J. Non-Cryst. Solids, 1995, vol. 188, pp. 181-189.

    Article  Google Scholar 

  11. C. Mercier, C. Follet-Houttemane, and A. Pardini, B. Revel: J. Non-Cryst. Solids, 2011, vol. 357, pp. 3901-3909.

    Article  Google Scholar 

  12. D.B. Dingwell, R. Knoche, and S.L. Webb: Eur. J. Mineral., 1993, vol. 5, pp. 133-140.

    Article  Google Scholar 

  13. A. Tilocca and A.N. Cormack: J. Phys. Chem. B, 2007, vol. 111, pp. 14256-14264.

    Article  Google Scholar 

  14. Y.B. Cheng, C. Xu, S.Y. Pan, Y.F. Xia, R.C. Liu, and S.X. Wang: J. Non-Cryst. Solids, 1986, vol. 80, pp. 201-208.

    Article  Google Scholar 

  15. B.O. Mysen, D. Virgo, C.M. Scarfe, and D.J. Cronin: Am. Mineral., 1985, vol. 70, pp. 487-498.

    Google Scholar 

  16. N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. and Mater. Trans. B, 2003, vol. 34B, pp. 509-516.

    Article  Google Scholar 

  17. S. Sumita, T. Mimori, K. Morinaga, and T. Yanagase: J. Jpn. Inst. Met., 1980, vol. 44, pp. 94-99.

    Google Scholar 

  18. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lorz, and R. Carli: Ironmak. Steelmak., 2000, vol. 27, pp. 238-242.

    Article  Google Scholar 

  19. K.Y. Ko and J.H. Park: ISIJ Int., 2013, vol. 53, pp. 958-965.

    Article  Google Scholar 

  20. K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang: Metall. and Mater. Trans. B, 2014, vol. 45B, pp. 1389-1397.

    Article  Google Scholar 

  21. G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, and F.M.B. Marques: J. Raman Spectrosc., 2007, vol. 38, pp. 21-33.

    Article  Google Scholar 

  22. R. Iordanova, Y. Dimitriev, V. Dimitrov, and D. Klissurski: J. Non-Cryst. Solids, 1994, vol. 167, pp. 74-80.

    Article  Google Scholar 

  23. B.O. Mysen, F.J. Ryerson, and D. Virgo: Am. Mineral., 1981, vol. 66, pp. 106-117.

    Google Scholar 

  24. F.J. Ryerson and P.C. Hess: Geochi. Cosmochim. Acta, 1980, vol. 44, pp. 611-624.

    Article  Google Scholar 

  25. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622-644.

    Google Scholar 

  26. A. Aronne, S. Esposito, and P. Pernice: J. Chem. Phys., 1997, vol. 51, pp. 163-168.

    Google Scholar 

  27. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 645-659.

    Google Scholar 

  28. J. Wong: J. Non-Cryst. Solids, 1976, vol. 20, pp. 83-100.

    Article  Google Scholar 

  29. A. Tilocca, A.N. Cormack, and N.H. de Leeuw: Faraday Discussions, 2007, vol. 136, pp. 45-55.

    Article  Google Scholar 

  30. M.W.G. Lockyer, D. Holland, and R. Dupree: J. Non-Cryst. Solids, 1995, vol. 188, pp. 207-219.

    Article  Google Scholar 

  31. S.S. Jung and I. Sohn: Ennviron. Sci. Technol., 2014, vol. 48, pp. 1886-1892.

    Article  Google Scholar 

  32. R.A. Schroeder and L.L. Lyons: J. Inorg. Nucl. Chem., 1966, vol. 28, pp. 1155-1163.

    Article  Google Scholar 

  33. C. Li: J. Catal., 2003, vol. 216, pp. 203-212.

    Article  Google Scholar 

  34. Y. Yu, G. Xiong, C. Li, and F.S. Xiao: J. Catal., 2000, vol. 194, pp. 487-490.

    Article  Google Scholar 

  35. H.C. Xin, J. Liu, F.T. Fan, Z.C. Feng, G.Q. Jia, Q.H. Yang, and C. Li: Micropor. Mesopor. Mat., 2008, vol. 113, pp. 231-239.

    Article  Google Scholar 

  36. C. Weigel, L. Cormier, G. Calas, L. Galoisy, and D.T. Bowron: Physical Review B, 2008, vol. 78, pp. 064202(1)-064202(11).

    Article  Google Scholar 

  37. P. McMillan, B. Piriou, and A. Navrotsky: Geochi. Cosmochim. Acta, 1982, vol. 46, pp. 2021-2037.

    Article  Google Scholar 

  38. M. Hass: J. Chem. Phys., 1970, vol. 31, pp. 415-422.

    Google Scholar 

  39. S. Agathopoulos, D. Tulyaganov, J. Ventura, S. Kannan, A. Saranti, M. Karakassides, and J. Ferreira: J. Non-Cryst. Solids, 2006, vol. 352, pp. 322-328.

    Article  Google Scholar 

Download references

Acknowledgments

Supports by the National High Technology Research and Development Program of China (863 Program, 2012AA06A114), the Key Projects in the National Science & Technology Pillar Program (2013BAC14B07), the Common Development Fund of Beijing, and the National Natural Science Foundation of China (51472007, 51272005, and 5172001) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Zhang or Z. T. Zhang.

Additional information

Manuscript submitted September 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.J., Shu, Q.F., Sridhar, S. et al. Effect of P2O5 and FetO on the Viscosity and Slag Structure in Steelmaking Slags. Metall Mater Trans B 46, 758–765 (2015). https://doi.org/10.1007/s11663-014-0270-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0270-1

Keywords

Navigation