Skip to main content
Log in

Numerical Simulation of Solidification Structure of ESR Ingot Using Cellular Automaton Method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The electroslag remelting (ESR) process is a widely used secondary remelting process for the production of high-value-added alloys and steels. The grain structure of ESR ingot has a great effect on the final properties of products. A multiscale mathematical model combining the macroscopic heat transport with the mesoscopic nucleation and grain growth was developed to predict the grain structure evolution of solidification ingot during the ESR process. A moving cell frame, which dynamically defines the calculation domain for grain structure simulation, was proposed to save the computation resources and time. The thermophysical properties of steel related to the solidification of rotor steel 30Cr1Mo1V were adopted in present model and the nucleation parameters, which were suitable for the ESR process, were determined using the trial and error method in numerical simulation. The multiscale mathematical model was validated by the comparison between predicted and experimentally observed grain structure, and the results showed that the model was capable of simulating the grain structure evolution during the ESR process. Finally, the preliminary investigation on the effect of industrial process parameters on the grain structure was carried out and the results showed that increasing melting rate caused finer columnar grain structure and changed the growth direction of columnar grain structure from the axial–radial growth into the radial growth at very high melting rate. Meanwhile, increasing the molten slag temperature made the columnar grain structure finer and reduced the thickness of the refined equiaxed grain layer both at the surface and bottom of the ESR ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a 0 :

Interatomic distance (m)

A m :

Cross-sectional area of mold (m2)

Ar 4 :

δ/γ Phase transformation temperature (°C)

C p :

Specific heat (J kg−1 K−1)

C 0 :

Solute concentration (wt pct)

C R :

Cooling rate (°C s−1)

D :

Solute diffusion coefficient in liquid

f s :

Solid fraction (–)

G :

Interface temperature gradient (°C m−1)

G c :

Interface concentration gradient (wt pct m−1)

h sm, h mm, h mb :

Heat transfer coefficients of slag/melt interface, melt/mold interface, melt/base plate interface (W m−2 K−1)

k, k v :

Equilibrium partition coefficient, nonequilibrium partition coefficient (–)

T, T slag, T w :

Temperature, average temperature of slag pool, temperature of cooling water (°C)

L :

Latent heat of solidification (J kg−1)

M e :

Melting rate (kg s−1)

m, m v :

Equilibrium liquidus slope, nonequilibrium liquidus slope (°C/%)

n :

δ/γ Phase transformation line slope (°C/%)

n max :

Maximum nuclei density (–)

n(∆T), δn :

Grain density, increase of grain density (–)

n sct):

New solidified cell number (–)

n tc :

Total cell number (–)

P C :

Solute Péclet number (–)

R :

Dendrite tip radius (m)

t :

Time (s)

V m :

Growth velocity of solidifying ingot (m s−1)

V, V max :

Dendritic tip growth velocity, maximum dendritic tip growth velocity (m s−1)

w c :

Carbon content (wt pct)

T, ∆T c, ∆T rT k :

Total dendritic tip undercooling, solutal undercooling, curvature undercooling, kinetics undercooling (°C)

T n, ∆T σ :

Average nucleation undercooling, standard deviation (°C)

∆r, ∆z :

Length and width of FD control volume (m)

δ(∆T):

Increase of undercooling

δf s :

Increase of solid fraction (–)

δ c :

Cell size (m)

ρ :

Density (kg m−3)

Iv(P C):

Ivantsov function of solute Péclet number (–)

Γ:

Gibbs–Thomson coefficient (–)

λ :

Thermal conductivity (W m−1 K−1)

μ :

Linear kinetic coefficient

l :

Liquid phase

s :

Solid phase

i :

Solute element

δ :

δ Ferrite

γ :

γ Austenite

References

  1. B. Hernandez-Morales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26, pp. 423–38.

    Article  Google Scholar 

  2. K.M. Kelkar, S.V. Patankar, and A. Mitchell: Proceedings of 2005 International Symposium on Liquid metal Processing and Casting, Santa Fe, NM, 2005, pp. 137–44.

  3. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–80.

    Article  Google Scholar 

  4. A. Rückert and H. Pfeifer: Metal 2007, Hradec nad Moravicí, Czech Republic, 2007, pp. 1–9.

  5. N. Giesselmann, A. Rückert and H. Pfeifer: 7th ECCC, Düsseldorf, Germany, 2011, Session 5.

  6. Y.W. Dong, Z.H. Jiang, H. Liu, R. Chen, and Z.W. Song: ISIJ Int. 2012, vol. 52, 2226–34.

    Article  Google Scholar 

  7. B.K. Li, B. Wang, and F. Tsukihashi: Metall. Mater. Trans. B. DOI:10.1007/s11663-013-9996-4.

  8. S. Ahmadi, H. Arabi, A. Shokuhfar, and A. Rezaei: J. Mater. Sci. Technol., 2009, vol. 25, 592–96.

    Google Scholar 

  9. H.W. Hesselbarth, I.R. Göbel: Acta Metall. Mater., 1991, vol. 39, pp. 2135–43.

    Article  Google Scholar 

  10. M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  Google Scholar 

  11. C.A. Gandin and M. Rappaz: Acta Metall. Mater., 1994, vol. 42, pp. 2233–46.

    Article  Google Scholar 

  12. M.F. Zhu and C.P. Hong: ISIJ Int., 2001, vol. 41, pp. 436–45.

    Article  Google Scholar 

  13. M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa: ISIJ Int., 2006, vol. 46, pp. 903–908.

    Article  Google Scholar 

  14. S. Luo, M.Y. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823–30.

    Article  Google Scholar 

  15. A. Kermanpur, D.G. Evans, R.J. Siddall, P.D. Lee, and M. Mclean: J. Mater. Sci., 2004, vol. 39, pp. 7175–82.

    Article  Google Scholar 

  16. L. Nastac: Mater. Sci. Technol., 2012, vol. 28, pp. 1006–13.

    Article  Google Scholar 

  17. S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2013, vol. 71, pp. 10–18.

    Article  Google Scholar 

  18. C.W. Zheng, N.M. Xiao, D.Z. Li, and Y.Y. Li: Comput. Mater. Sci., 2009, vol. 45, pp. 568–75.

    Article  Google Scholar 

  19. M. Qian and Z.X. Guo: Mater. Sci. Eng. A, 2004, vol. 365A, pp. 180–185.

    Article  Google Scholar 

  20. S. Kundu, M. Dutta, S. Ganguly, and S. Chandra: Scripta Mater., 2004, vol. 50, pp. 891–95.

    Article  Google Scholar 

  21. Y.J. Lan, D.Z. Li, and Y.Y. Li: Acta Mater., 2004, vol. 52, pp. 1721–29.

    Article  Google Scholar 

  22. X.Q. Wei and L. Zhou: Acta Metall. Sin. (Engl. Lett.), 2000, vol. 13, pp. 794–99.

    Google Scholar 

  23. J.P. Yao, L. Zhang, and H.M. Li: Foundry Technol., 2008, vol. 29, pp. 1670–73.

    Google Scholar 

  24. B.K. Li, F. Wang, H. Zhang, and M.Q. Chen: J. Iron Steel Res. Int., 2011, vol. 18, pp. 159–65.

    Google Scholar 

  25. B.K. Li, Q. Wang, F. Wang, and M.Q. Chen: JOM, 2014. DOI: 10.1007/S11837-014-0979-y.

    Google Scholar 

  26. L. Rao, X.L. Li, M.P. Geng, and Y. Zhang: Foundry, 2010, vol. 59, pp. 594–96.

    Google Scholar 

  27. L. Rao, Q.Y. Hu, X.L. Li, and M.P. Geng: Spec. Cast. Nonferr. Alloy., 2011, vol. 31, pp. 99–101.

    Google Scholar 

  28. M. Choudhary and J. Szekely: Ironmak. Steelmak., 1981, vol. 5, pp. 225–32.

    Google Scholar 

  29. W. Oldfield: ASM Trans. Quart., 1966, vol. 59, pp. 945–61.

    Google Scholar 

  30. P. Thevoz, J.L. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    Article  Google Scholar 

  31. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–124.

    Article  Google Scholar 

  32. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  Google Scholar 

  33. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  34. M.J. Azizi: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  Google Scholar 

  35. C.A. Gandin and M. Rappaz: Acta Mater., 1997, vol. 45, 2187–95.

    Article  Google Scholar 

  36. S. Luo, M.Y. Zhu, C. Ji, and Z.Z. Cai: Iron Steel, 2010, vol. 45, pp. 31–36.

    Google Scholar 

  37. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Trans. B, 1986, vol. 17B, pp. 845–49.

    Article  Google Scholar 

  38. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  Google Scholar 

  39. Y. Meng, B. G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  Google Scholar 

  40. K. Harste: Technical University of Clausthal, Clausthal, 1989.

Download references

Acknowledgments

This research was supported by the National High-tech Research and Development Program of China (No. 2012AA03A508, No. 2013AA030902) (863 Program) and the National Natural Science Foundation of China (No. 51274057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Manuscript submitted February 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Y. Numerical Simulation of Solidification Structure of ESR Ingot Using Cellular Automaton Method. Metall Mater Trans B 46, 800–812 (2015). https://doi.org/10.1007/s11663-014-0227-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0227-4

Keywords

Navigation