Skip to main content
Log in

Formation of Copper Sulfide Artifacts During Electrolytic Dissolution of Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Based on equilibrium considerations, copper sulfide is not expected to form in manganese-containing steel, yet previous workers reported finding copper sulfide in transmission electron microscope samples which had been prepared by electropolishing. It is proposed that copper sulfide can form during electrolytic dissolution because of the much greater stability of copper sulfide relative to manganese sulfide in contact with an electrolyte containing copper and manganese cations. This mechanism has been demonstrated with aluminum-killed steel samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Liu, Y. Kobayashi, K. Nagai, J. Yang and M. Kuwabara: ISIJ Int., 2006, vol. 46, pp. 744-753.

    Article  CAS  Google Scholar 

  2. J.M. Dowling, J.M. Corbett and H.W. Kerr: Metall. Trans. A, 1986, vol. 17A, pp. 1611-1623.

    CAS  Google Scholar 

  3. Z. Zhang and R.A. Farrar: Mater. Sci. Technol., 1996, vol. 12, pp. 237-260.

    Article  CAS  Google Scholar 

  4. I. Madariaga, J.L. Romero and I. Gutiérrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1003-1015.

    CAS  Google Scholar 

  5. G. Wranglén: Corros. Sci., 1974, vol. 14, pp. 331-349.

    Article  Google Scholar 

  6. J.G. Park, J.H. Park, Y.S. Lee, S.M. Jung and D.J. Min: ISIJ Int., 2009, vol. 49, pp. 171-177.

    Article  CAS  Google Scholar 

  7. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 189–228.

  8. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298-310.

    CAS  Google Scholar 

  9. O. Kubaschewski, C.B. Alcock and P.J. Spencer: Materials Thermochemistry, 6th Edition, p. 257, Pergamon Press, Oxford, 1993.

    Google Scholar 

  10. W. Zhang and C.Y. Cheng: Hydrometallurgy, 2007, vol. 89, pp. 160-177.

    Article  CAS  Google Scholar 

  11. W.M. Haynes (ed.): CRC Handbook of Chemistry and Physics, 93rd ed, Taylor and Francis, London, pp. 5–198, 2013.

  12. B.K. Freed, J. Biesecker and W.J. Middleton: J. Fluorine Chem., 1990, vol. 48, pp. 63-75.

    Article  CAS  Google Scholar 

  13. J.-L. Pouchou: Microchim. Acta, 1994, vol. 114/115, pp. 33–52.

  14. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711-719.

    Article  Google Scholar 

  15. Y. Kanbe, A. Karasev, H. Todoroki and P.G. Jönsson: Steel Res. Int., 2011, vol. 82, pp. 313-322.

    Article  CAS  Google Scholar 

Download references

We are grateful for support of this project by the members of the Center for Iron and Steelmaking Research and useful discussions with Dr Andrey Karasev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chris Pistorius.

Additional information

Manuscript submitted January 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Pistorius, P.C. Formation of Copper Sulfide Artifacts During Electrolytic Dissolution of Steel. Metall Mater Trans B 44, 483–486 (2013). https://doi.org/10.1007/s11663-013-9826-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9826-8

Keywords

Navigation