Skip to main content
Log in

Studies on transport phenomena during directional solidification of a noneutectic binary solution cooled from the top

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this article, we investigate the effects of laminar natural convection on directional solidification of binary fluids with noneutectic compositions when cooled and solidified from the top. The study is performed using aqueous ammonium chloride solution as the model fluid. In the first case, the initial concentration of ammonium chloride is less than the eutectic composition, leading to an aiding of the double-diffusive convection. In this case, solidification leads to the formation of a diffused matrix of dendritic crystals (mushy region) separating the pure solid and liquid regions. The mushy interface is characterized by a waviness, which is caused by a Rayleigh-Benard type of cellular motion in the liquid region. The cellular motions, which are caused by thermal and solutal buoyancy, cease once the thickness of the liquid layer falls below a critical value. The second case leads to a unique situation, in which crystals nucleated at the top wall of the cavity detach and descend through the lighter bulk fluid and, finally, settle at the floor of the cavity. In both the aforementioned cases, the features of convective transport are visualized using a sheet of laser light scattered through neutrally buoyant glass particles seeded in the solution. Numerical simulations are also performed for the first case, and the agreement with experimental results is found to be good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a P , a P 0 :

coefficients of the discretization equation

c p :

specific heat

C :

species composition

D :

mass diffusion coefficient

f :

mass fraction

F −1 :

inverse of latent heat function

g :

acceleration due to gravity

h :

sensible enthalpy

H(t):

instantaneous space-averaged liquid layer height at time t

ΔH :

latent enthalpy content of a control volume

ΔV :

volume of a computational cell

k :

thermal conductivity

k P :

partition coefficient

K :

permeability

l ref :

diffusion length scale in the liquid

L :

latent heat of fusion

p :

pressure

Pe:

Peclet number

r :

interfacial area concentration

R :

local crystal growth rate

S :

source term

T :

temperature

t :

time

u :

x component of velocity

v :

y component of velocity

u :

continuum velocity vector

x, y :

coordinates

α :

thermal diffusivity

β T :

thermal expansion coefficient

β C :

solutal expansion coefficient

δ :

solutal boundary layer thickness

χ :

volume fraction

λ :

relaxation factor

μ :

dynamic viscosity

ν :

kinematic viscosity

ρ :

density

cold:

cold wall

0, i :

initial

E :

eutectic

hot:

hot wall

l :

liquid phase

L :

liquidus

m :

evaluated at melting point

macro:

macroscopic

n :

iteration level

P :

related to the grid point “P”

s :

solid phase

References

  1. H.E. Huppert: J. Fluid Mech., 1990, vol. 212, pp. 209–40.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  2. J.S. Turner, H.E. Huppert, and R.S.J. Sparks: J. Petrol., 1986, vol. 27, pp. 397–437.

    CAS  Google Scholar 

  3. G. Brandeis and C. Jaupart: Earth Planet. Sci. Lett., 1986, vol. 77, pp. 345–61.

    Article  ADS  Google Scholar 

  4. R.C. Kerr, A.W. Woods, M.G. Worster, and H.E. Huppert: J. Fluid Mech., 1990, vol. 216, pp. 323–42.

    Article  ADS  CAS  Google Scholar 

  5. R.C. Kerr, A.W. Woods, M.G. Worster, and H.E. Huppert: J. Fluid Mech., 1990, vol. 217, pp. 331–48.

    Article  MATH  ADS  CAS  Google Scholar 

  6. R.C. Kerr, A.W. Woods, M.G. Worster, and H.E. Huppert: J. Fluid Mech., 1990, vol. 218, pp. 337–54.

    Article  MATH  ADS  CAS  Google Scholar 

  7. S.H. Davis, U. Muller, and C. Dietsche: J. Fluid Mech., 1984, vol. 144, pp. 133–51.

    Article  ADS  Google Scholar 

  8. W.Z. Cao and D. Poulikakos: Int. J. Heat Mass Transfer, 1989, vol. 33, pp. 427–34.

    Article  Google Scholar 

  9. T. Motegi and A. Ohno: J. Jpn. Inst. Met., 1980, vol. 44, pp. 359–66.

    CAS  Google Scholar 

  10. P. Kumar, S. Chakraborty, K. Srininvasan, and P. Dutta: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 605–12.

    Article  CAS  Google Scholar 

  11. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  MATH  CAS  Google Scholar 

  12. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Transfer, 1989, vol. 34, pp. 1717–32.

    Google Scholar 

  13. D. Morvan, M.El Ganaoui, and P. Bontoux: Int J. Heat Mass Transfer, 1998, vol. 42, pp. 573–79.

    Article  Google Scholar 

  14. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  15. S.N. Tewari, R. Shah, and M.A. Chopra: Metall. Trans. A, 1993, vol. 24A, pp. 1661–69.

    CAS  Google Scholar 

  16. J.A. Burton, R. Prim, and W. Slichter: Theoretical. J. Chem. Phys., 1953, vol. 21, pp. 1987–91.

    CAS  Google Scholar 

  17. J. Ni, R.J. Feller, and C. Beckermann: in Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991, pp. 675–82.

    Google Scholar 

  18. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere McGraw-Hill, Washington, D.C., 1980.

    MATH  Google Scholar 

  19. A.D. Brent, V.R. Voller, and K.J. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  20. S. Chakraborty and P. Dutta: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 562–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Srinivasan, K., Dutta, P. et al. Studies on transport phenomena during directional solidification of a noneutectic binary solution cooled from the top. Metall Mater Trans B 34, 899–909 (2003). https://doi.org/10.1007/s11663-003-0096-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-003-0096-8

Keywords

Navigation