Skip to main content
Log in

The Correlation Between Grain Orientation Evolution and Stress Rupture Properties of Waspaloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain orientation evolution of Waspaloy with different initial grain sizes under the same stress rupture tests were systematically investigated by electron back-scattered diffraction (EBSD). Correlation between the grain orientation evolution and the changes of stress rupture properties were also studied. The results show that the specimens with different initial grain sizes present different grain orientation evolution behaviors during the constant stress loading process, and the stress rupture lives of alloy are closely related to the orientation changes. Specimen with large initial grain size generally exhibits a small lattice rotation, in the [101] orientation and consequently, a long stress rupture life. On the converse, the fine grain specimen exhibits significantly shorter life with much more [111] orientation, since the lattice is obviously rotated and the deformation has little coordination. Further analysis shows that initial grain size affects the misorientation distribution in the grain, which has a significant influence on the stress rupture life. The lower the misorientation angle and the higher the proportion of the low-angle misorientation is, the longer the rupture time it exhibits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Amiri, S. Bruschi, M.H. Sadeghi, and P. Bariani: Mater. Sci. Eng. A, 2013, vol.562, pp. 77-82.

    Article  CAS  Google Scholar 

  2. Reed RC (2008) The superalloys: fundamentals and applications, Cambridge University Press, Cambridge

    Google Scholar 

  3. J. Liu, T. Jin, J. Zhang, and Z. Hu: Acta Metal. Sin., 2001, vol. 37, pp. 1233-1234.

    CAS  Google Scholar 

  4. R.A. MacKay, and R.D. Maier: Metall. Mater. Transs. A, 1982, vol. 13, pp. 1747-1754.

    Article  Google Scholar 

  5. 5. Caron P, Khan T, Ohta Y, Nakagawa YG (1988) Superalloys 1988. The Minerals, Metals & Materials Society, Warrendale, PA, pp. 215–224

    Book  Google Scholar 

  6. J. Liu, T. Jin, X. Sun, J. Zhang, H. Guan, and Z. Hu: Mater. Sci. Eng. A, 2008, vol 479, pp. 277-284.

    Article  Google Scholar 

  7. G. Han, J. Yu, Y. Sun, X. Sun, and Z. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5383-5390.

    Article  Google Scholar 

  8. S. Floreen, and R. Kane: Metall. Mater. Transs. A, 1976, vol. 7, pp. 1157-1160.

    Article  Google Scholar 

  9. J. Larson, and S. Floreen: Metall. Mater. Transs. A, 1977, vol. 8, pp. 51-55.

    Article  Google Scholar 

  10. B. Du, J. Yang, C. Cui, and X. Sun: Acta Metal. Sin., 2014, p. 1384.

  11. K. Thibault, D. Locq, P. Caron, D. Boivin, Y. Renollet, and Y. Bréchet: Mater. Sci. Eng. A, 2013, vol. 588, pp. 14-21.

    Article  CAS  Google Scholar 

  12. D. Kobayashi, M. Miyab, Y. Kagiya Y, and A. T. Yokobori Jr: Strength, Fracture and complexity, 2011, 7(2):157-167.

    Google Scholar 

  13. J. Yan, Y. Gu, F. Sun, Y. Michinari, Z. Zhong, Y. Yuan, and J. Lu: Mater. Sci. Eng. A, 2015, vol. 639, pp. 15-20.

    Article  CAS  Google Scholar 

  14. A. Devaux, B. Picqué, M. Gervais, E. Georges, T. Poulain, and P. Héritier: TMS 2012, pp. 911–19.

  15. W. F. Smith, and J. Hashemi: Foundations of Materials Science and Engineering, 5th Ed., Beijing: China Machine Press, 2011, pp. 138.

    Google Scholar 

  16. J. Zhang, Y. Zhang, and K. Xu: Journal of crystal growth, 2005, vol. 285, pp. 427-428.

    Article  CAS  Google Scholar 

  17. L. Margulies, G. Winther, and H. Poulsen: Sci., 2001, vol. 291, pp. 2392-2393

    Article  CAS  Google Scholar 

  18. H. F. Poulse, L. Margulies, S. Schmidt, and G. Winther: Acta Mater., 2003, vol. 51, pp. 3821-3822.

    Article  Google Scholar 

  19. G. Winther, L. Margulies, S. Schmidt, and H. F. Poulse: Acta Mater., 2004, vol. 52, pp. 2863-2864.

    Article  CAS  Google Scholar 

  20. G. Winther: Mater. Sci. Eng. A,2008, vol. 483, pp. 40-41.

    Article  Google Scholar 

  21. P. Cao, G. Fang, L. Lei, and P. Zeng: Acta Metal. Sin., 2007, vol. 43, pp. 913-914.

    CAS  Google Scholar 

  22. J. Miao, T. M. Pollock, and J. W. Jones: Acta. Mater., 2012, vol. 60, pp. 2840-2841.

    Article  CAS  Google Scholar 

  23. X. Yang, and Y. Jiang: Acta. Metal. Sin., 2010, vol. 46, pp. 451-452.

    Article  CAS  Google Scholar 

  24. W. Mao, L. Chen, and Y. Yu: Chinese Science Bulletin, 2002, vol. 47, pp. 1540-1541.

    Google Scholar 

  25. L. Cao, Y. Zhou, T. Jin, and X. Sun: Acta. Metal. Sin., 2014, vol. 50, pp. 11-12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai-cang Zhang.

Additional information

Manuscript submitted January 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Mc., Zhang, Q. & Wei, K. The Correlation Between Grain Orientation Evolution and Stress Rupture Properties of Waspaloy. Metall Mater Trans A 49, 6063–6074 (2018). https://doi.org/10.1007/s11661-018-4923-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4923-6

Navigation