Skip to main content
Log in

A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    Article  Google Scholar 

  2. H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749–52.

    Article  Google Scholar 

  3. H. Kim, T. Altan, and Q. Yan: J. Mater. Process. Technol., 2009, vol. 209, pp. 4122–33.

    Article  Google Scholar 

  4. Z. Shi, K. Liu, M. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, and J. Li: Mater. Sci. Eng. A, 2012, vol. 535, pp. 290–96.

    Article  Google Scholar 

  5. Z.X. Gui, W.K. Liang, Y. Liu, and Y.S. Zhang: Mater. Des .2014, vol. 60, pp. 26–33.

    Article  Google Scholar 

  6. H.P. Li, L.F. He, G.Q. Zhao, and L. Zhang: Mater. Sci. Eng. A, 2013, vol. 580, pp. 330–48.

    Article  Google Scholar 

  7. M. Abbasi, M. Naderi, and A. Saeed-Akbari: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1852–61.

    Google Scholar 

  8. A. Bardelcik, M.J. Worswick, and M.A. Wells: Mater. Des., 2014, vol. 55, pp. 509–25.

    Article  Google Scholar 

  9. P. Åkerström and M. Oldenburg: Model Simul. Mater. Sci., 2007, vol. 15, pp. 105–19.

    Article  Google Scholar 

  10. M. Lee, S. Kim, and H.N. Han: Comput. Mater. Sci., 2009, vol. 47, pp. 556–67.

    Article  Google Scholar 

  11. X. Chen, N. Xiao, D. Li, G. Li and G. Sun: Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, pp. 065005–21.

    Article  Google Scholar 

  12. A. Abdollahpoor, X. Chen, M.P. Pereira, and N. Xiao. J. Mater. Process. Technol., 2016, vol. 228, pp. 125–36.

    Article  Google Scholar 

  13. A. Blaise, B. Bourouga, B. Abdulhay, and C. Dessain: Appl. Therm. Eng. 2013, vol. 61, pp. 141–48.

    Article  Google Scholar 

  14. J.B. Leblond: Int. J. Plast., 1989, vol. 5, pp. 551–71.

    Article  Google Scholar 

  15. J.B. Leblond: Int. J. Plast., 1989, vol. 5, pp. 573–93.

    Article  Google Scholar 

  16. M. Lee, S. Kim, H.N. Han, and W.C. Jeong: Int. J. Plast., 2009, vol. 25, pp. 1726–58.

    Article  Google Scholar 

  17. A. Tahimi, F. Barbe, L. Taleb, and S. Meftah: Comput. Mater. Sci., 2012, vol. 64, pp. 25–29.

    Article  Google Scholar 

  18. L. Taleb and F.O. Sidoroff: Int. J. Plast., 2003, vol. 19, pp. 1821–42.

    Article  Google Scholar 

  19. J.Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, and H. Yang: Mater. Sci. Eng. A, 2015, vol. 631, pp. 214–19.

    Article  Google Scholar 

  20. S.D. Norris and I. Wilson: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 297–309.

    Article  Google Scholar 

  21. P. Åkerström and M Oldenburg: J. Mater. Process. Technol., 2006, vol. 174, pp. 399–406.

    Article  Google Scholar 

  22. S.J. Lee, E.J. Pavlina, and C.J.V. Tyne: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3186–94.

    Article  Google Scholar 

  23. M. Naderia, L. Durrenberger, A. Molinari, W. Bleck: Mater. Sci. Eng. A, 2008, vol. 478, pp. 130–39.

    Article  Google Scholar 

  24. M. Eriksson, M. Oldenburg, M.C. Somani, and L.P. Karjalainen: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 277–94.

    Article  Google Scholar 

Download references

Acknowledgments

This research work is financially supported by the National Natural Science Foundation of China (Grant No. 51275185) and National Natural Science Foundation of China (Grant No. 51405171). The authors would like to acknowledge the State Key Lab of Materials Processing and Die and Mould Technology for their assistance in the tensile experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yisheng.

Additional information

Manuscript submitted June 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, Z., WeiKang, L., Zhongxiang, G. et al. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping. Metall Mater Trans A 48, 1375–1382 (2017). https://doi.org/10.1007/s11661-016-3884-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3884-x

Keywords

Navigation