Skip to main content
Log in

Microstructure and Mechanical Properties of Aluminum-Alumina Bulk Nanocomposite Produced by a Novel Two-Step Ultrasonic Casting Technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An unprecedented uniform distribution of nano-dispersoids in aluminum-alumina bulk nanocomposite and enhancement in mechanical properties were achieved through a novel ultrasonic casting technique involving two-step ultrasonication. Ultrasonic casting can be classified into two types: (a) contact type, in which the sonicating probe is in direct contact with the liquid melt during ultrasonication and (b) non-contact type, in which the ultrasonic waves reach the liquid melt through the mold wall. Each of the processes has certain disadvantages, and the present study aims at eliminating the primary disadvantages of both the processes, through a novel two-step ultrasonic casting technique. The significant improvement in distribution was possibly due to the cavitation in the mold, leading to the elimination of non-uniformity in the cooling rate at the mesoscopic scale. The improvement in mechanical properties is explained through microstructure analysis in correlation with EBSD analysis, TEM analysis, hardness test, and tensile test. The yield strength of the nanocomposite produced by the two-step process was ~38 pct higher than that produced by non-contact and contact methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Mula, P. Padhi, S.C. Panigrahi, S.K. Pabi, and S. Ghosh: Mater. Res. Bull., 2009, vol. 44, pp. 1154–60.

    Article  Google Scholar 

  2. S. Mula, S.K. Pabi, C.C. Koch, P. Padhi, and S. Ghosh: Mater. Sci. Eng. A, 2012, vol. 558, pp. 485–91.

    Article  Google Scholar 

  3. P. Padhi, K.N. Kumar, S. Ghosh, H.M. Vishwanatha, S.C. Panigrahi, and S. Ghosh: Mater. Manuf. Process., 2015, vol. 0, pp. 1–8. 10.1080/10426914.2015.1004707

  4. R.S. Rana, R. Purohit, and S. Das: Int. J. Sci. Eng. Res., 2012, vol. 3, pp. 1–16.

    Google Scholar 

  5. L.Y. Chen, J.Y. Peng, J.Q. Xu, H. Choi, and X.C. Li: Scr. Mater., 2013, vol. 69, pp. 634–37.

    Article  Google Scholar 

  6. L.Y. Chen, D. Weiss, J. Morrow, J.Q. Xu, and X.C. Li: Manuf. Lett., 2013, vol. 1, pp. 62–65.

    Article  Google Scholar 

  7. J. Hashim, L. Looney and M.S.J. Hashmi: J. Mater. Process. Technol., 1999, vol. 92–3, pp. 1–7.

    Article  Google Scholar 

  8. S.A. Sajjadi, H.R. Ezatpour, and H. Beygi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8765–71.

    Article  Google Scholar 

  9. C. Suryanarayana, E. Ivanov, and V. Boldyrev: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 151–58.

    Article  Google Scholar 

  10. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  Google Scholar 

  11. J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li: J. Phys. Condens. Matter., 2012, vol. 24, pp. 255304–14.

    Google Scholar 

  12. G.I. Eskin: Adv. Perform. Mater., 1997, vol. 1, pp. 223–32.

    Article  Google Scholar 

  13. M. De Cicco, H. Konishi, G. Cao, H.S. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, and X. Li: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3038–45.

    Article  Google Scholar 

  14. S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V. V Promakhov, A.A. Averin, and A.P. Khrustalyov: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2870–75.

    Article  Google Scholar 

  15. G. Cao, J. Kobliska, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 880–86.

    Article  Google Scholar 

  16. H. Choi, M. Jones, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 738–46.

    Article  Google Scholar 

  17. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378–83.

    Article  Google Scholar 

  18. N. Srivastavaa, and G.P. Chaudhari: Mater. Sci. Eng. A, 2016, vol. 651, pp. 241–47.

    Article  Google Scholar 

  19. S. Kandemir, D.P. Weston, and H. V. Atkinson: Key Eng. Mater., 2012, vol. 504–506, pp. 339–44.

    Article  Google Scholar 

  20. H. Ribes, R. Da Silva, M. Suéry, and T. Bretheau: Mater. Sci. Technol., 1990, vol. 6, pp. 621–28.

    Article  Google Scholar 

  21. L.-Y. Chen, J.-Q. Xu, and X.-C. Li: Mater. Res. Lett., 2015, vol. 3, pp. 43–49.

    Article  Google Scholar 

  22. L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, and X.-C. Li: Nature, 2015, vol. 528, pp. 539–43.

    Article  Google Scholar 

  23. G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319–25.

    Article  Google Scholar 

  24. G.I. Eskin, and D.G. Eskin: Ultrason. Sonochem., 2003, vol. 10, pp. 297–301.

    Article  Google Scholar 

  25. T. Hielscher: ENS’ 05 Paris, Paris, France, 2005, pp. 1–6.

    Google Scholar 

  26. A. Ramirez, M. Qian, B. Davis, T. Wilks, and D.H. StJohn: Scr. Mater., 2008, vol. 59, pp. 19–22.

    Article  Google Scholar 

  27. Y.M. Youssef, R.J. Dashwood, and P.D. Lee: Compos. Part A, 2005, vol. 36A, pp. 747-63.

    Article  Google Scholar 

  28. S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.

    Article  Google Scholar 

  29. F.R. Juretzko, B.K. Dhindaw, D.M. Stefanescu, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1691–96.

    Article  Google Scholar 

  30. D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A. Catalina, and S. Sen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1697–706.

    Article  Google Scholar 

  31. J.B. Ferguson, G. Kaptay, B.F. Schultz, P.K. Rohatgi, K. Cho, and C.S. Kim: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4635–45.

    Article  Google Scholar 

  32. George E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill book Co., New York, 1988.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Ocean Technology, Chennai, Ministry of Earth Sciences, New Delhi, INDIA, and the work was carried out at Indian Institute of Technology Kharagpur, INDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Ghosh.

Additional information

Manuscript submitted March 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanatha, H.M., Eravelly, J., Kumar, C.S. et al. Microstructure and Mechanical Properties of Aluminum-Alumina Bulk Nanocomposite Produced by a Novel Two-Step Ultrasonic Casting Technique. Metall Mater Trans A 47, 5630–5640 (2016). https://doi.org/10.1007/s11661-016-3740-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3740-z

Keywords

Navigation