Skip to main content
Log in

Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. I.N. Fridlyander and O.G. Senatorova: Mater. Sci. Forum, 1996, vol. 217, pp. 1813–18.

    Article  Google Scholar 

  2. K. Cudney: Welding Int., 1993, vol. 7 (8), pp. 599–603.

    Article  Google Scholar 

  3. T. Ma: Ph.D. Thesis, Delft University of Technology, Delft, 1997.

  4. W. Zhou: Singapore Welding Society Newsletter, Sept. 1999.

  5. N. Kamp, A. Sullivan, and J.D. Robson (2007) Mater. Sci. Eng. A, 466:246–55.

    Article  Google Scholar 

  6. G. Verhaeghe: Ph.D. Thesis, University of Warwick, Warwick, 2008.

  7. S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie and J.Z. Jiang: Welding J., 2013, vol. 92 (3), pp. 64–71.

    Google Scholar 

  8. M. Olabode, P. Kah, and A. Salminen: Rev. Adv. Mater. Sci., 2015, vol. 42 (1), pp. 6–19.

    Google Scholar 

  9. M. Olabode: Ph.D. Thesis, University of Technology, Lappeenranta, Lappeenranta, 2015.

  10. L. Zhang, X. Li, Z. Nie, H. Huang, and J. Sun: Mater. Design, 2015, vol. 83, pp. 451–58.

    Google Scholar 

  11. S. Anik and L. Dorn: Schweißeignung Metallischer Werkstoffe, DVS, Düsseldorf, 1995.

    Google Scholar 

  12. T. Ma and G. den Ouden: Mater. Sci. Eng.: A, 1999, vol. 266 (1), pp. 198–204.

    Article  Google Scholar 

  13. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, 1979, pp. 842–82.

    Google Scholar 

  14. J. Rapp, M. Beck, F. Dausinger, and H. Hügel: Proc. 5th ECLAT, Bremen, Sept. 1994, DVS-Verlag, Düsseldorf, 1994, pp. 313–25.

    Google Scholar 

  15. K.H. Leong and H.K. Geyer: Proc. ICALEO, Orlando, FL, Nov. 1998, Laser Institute of America, Orlando, FL, 1998, vol. 85 (2), pp. F-243–F-251.

  16. K.H. Leong, H.K. Geyer, K.R. Sabo, and P.G. Sanders: Proc. ICALEO, San Diego, CA, Nov. 1997, Laser Institute of America, Orlando, FL, 1997, vol. 83 (2), pp. G-1–8.

  17. A. Block-Bolten and T.W. Eager: Metall. Trans. B, 1984, vol. 15 (3), pp. 461–69.

    Article  Google Scholar 

  18. H. Zhao and T. DebRoy: Welding J., 2001, vol. 80 (8), pp. 204–10.

    Google Scholar 

  19. W.M. Haynes: CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press, Boca Raton, FL, 2011, pp. 6-88.

    Google Scholar 

  20. E. Beyer: Schweißen mit Laser - Grundlagen, Springer, Berlin, 1995, pp. 28–40.

    Book  Google Scholar 

  21. W.M. Steen, J. Dowden, M. Davis, and P. Kapadia: J. Phys. D: Appl. Phys., 1988, vol. 21 (8), pp. 1255–60.

    Article  Google Scholar 

  22. G. Guizzetti and A. Piaggi: Handbook of Optical Constants of Solids 2, 1st ed., Academic Press, New York, NY, 1998, pp. 477–85.

    Book  Google Scholar 

  23. P.N. Anyalebechi: Scripta Metall., 1995, vol. 33 (8), pp. 1209–16.

    Article  Google Scholar 

  24. M. Mazur: Welding Int., 1992, vol. 6 (12), pp. 929–31.

    Article  Google Scholar 

  25. S. Riekehr, H. Iwan, R. Dinse, V. Ventzke, and P. Haack: European Patent No. EP20120162865, 2012.

  26. J. Enz, S. Riekehr, V. Ventzke, and N. Kashaev: Mater. Sci. Forum, 2015, vols. 828–829, pp. 389–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephin Enz.

Additional information

Manuscript submitted June 16, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enz, J., Riekehr, S., Ventzke, V. et al. Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material. Metall Mater Trans A 47, 2830–2841 (2016). https://doi.org/10.1007/s11661-016-3446-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3446-2

Keywords

Navigation