Skip to main content
Log in

Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro–meso transition based on the Kröner model. The meso–macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, A.A. Gazder: Acta Mater. 61 (2013) 5247–5262. doi:10.1016/j.actamat.2013.05.017.

    Article  Google Scholar 

  2. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu: Acta Mater. 61 (2013) 5779–5790. doi:10.1016/j.actamat.2013.06.022.

    Article  Google Scholar 

  3. J. Fajoui, D. Gloaguen, B. Courant, R. Guillén: Comput. Mech. 44 (2009) 285–296. doi:10.1007/s00466-009-0374-7.

    Article  Google Scholar 

  4. D. Muller, X. Lemoine, M. Berveiller: J. Eng. Mater. Technol. 116 (1994) 378–383. doi:10.1115/1.2904301.

    Article  Google Scholar 

  5. D. Muller, M. Berveiller, J. Kratochvíl: Mater. Sci. Forum. 123-125 (1993) 195–204. doi:10.4028/www.scientific.net/MSF.123-125.195.

    Article  Google Scholar 

  6. X. FEAUGAS, P. PILVIN, M. CLAVEL: Acta Mater. 45 (1997) 2703–2714. doi:10.1016/S1359-6454(96)00407-7.

    Article  Google Scholar 

  7. P. Evrard, I. Alvarez-Armas, V. Aubin, S. Degallaix: Mech. Mater. 42 (2010) 395–404. doi:10.1016/j.mechmat.2010.01.007.

    Article  Google Scholar 

  8. Y. Li, V. Aubin, C. Rey, P. Bompard: Int. J. Fatigue. 42 (2012) 71–81. doi:10.1016/j.ijfatigue.2011.07.003.

    Article  Google Scholar 

  9. T. Skippon, M.R. Daymond: Mater. Sci. Eng. A. 634 (2015) 77–85. doi:10.1016/j.msea.2015.03.033.

    Article  Google Scholar 

  10. B. Haddag, T. Balan, F. Abed-Meraim: Int. J. Plast. 23 (2007) 951–979. doi:10.1016/j.ijplas.2006.10.004.

    Article  Google Scholar 

  11. S. Mahesh, C.N. Tomé, R.J. McCabe, G.C. Kaschner, A. Misra, I.J. Beyerlein: Metall. Mater. Trans. A. 35 (2004) 3763–3774. doi:10.1007/s11661-004-0282-6.

    Article  Google Scholar 

  12. S. Hiwatashi, A. Van Bael, P. Van Houtte, C. Teodosiu: Comput. Mater. Sci. 9 (1997) 274–284. doi:10.1016/S0927-0256(97)00069-4.

    Article  Google Scholar 

  13. H. Mughrabi: Phys. Status Solidi A. 104 (1987) 107–120. doi:10.1002/pssa.2211040108.

    Article  Google Scholar 

  14. B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, E. Aernoudt: Acta Mater. 49 (2001) 1607–1619. doi:10.1016/S1359-6454(01)00066-0.

    Article  Google Scholar 

  15. J. Fajoui, D. Gloaguen, B. Girault: Acta Mech. 226 (2015) 2715–2727. doi:10.1007/s00707-015-1347-x.

    Article  Google Scholar 

  16. I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier, C.N. Tomé: Acta Mater. 48 (2000) 2031–2047. doi:10.1016/S1359-6454(00)00051-3.

    Article  Google Scholar 

  17. E.M. Viatkina, W. a. M. Brekelmans, M.G.D. Geers: Comput. Mech. 41 (2008) 391–405. doi:10.1007/s00466-007-0195-5.

    Article  Google Scholar 

  18. M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, B. Mihaila: J. Mech. Phys. Solids., 2013, vol. 61, pp. 2034–46, DOI:10.1016/j.jmps.2013.05.005.

    Article  Google Scholar 

  19. G. Franz, F. Abed-Meraim, M. Berveiller: Int. J. Plast. 48 (2013) 1–33. doi:10.1016/j.ijplas.2013.02.001.

    Article  Google Scholar 

  20. H. Mughrabi: Acta Metall. 31 (1983) 1367–1379. doi:10.1016/0001-6160(83)90007-X.

    Article  Google Scholar 

  21. X. Lemoine, M. Berveiller, D. Muller: Mater. Sci. Forum. 157-162 (1994) 1821–1826. doi:10.4028/www.scientific.net/MSF.157-162.1821.

    Article  Google Scholar 

  22. F. David, I. Aubert, X. Lemoine, M. Berveiller: Comput. Mater. Sci. 9 (1997) 188–198. doi:10.1016/S0927-0256(97)00074-8.

    Article  Google Scholar 

  23. D. Gloaguen, M. Francois: Phys. Status Solidi Appl. Mater. Sci. 203 (2006) 1940–1953. http://cat.inist.fr/?aModele=afficheN&cpsidt=17860381 (accessed September 3, 2014).

  24. P. Lipinski, M. Berveiller: Int. J. Plast. 5 (1989) 149–172. doi:10.1016/0749-6419(89)90027-2.

    Article  Google Scholar 

  25. P.D. Wu, S.R. MacEwen, D.J. Lloyd, M. Jain, P. Tugcu, K.W. Neale: J. Plast. 21 (2005) 723–739. doi:10.1016/j.ijplas.2004.05.007.

    Article  Google Scholar 

  26. M. Choteau, P. Quaegebeur, S. Degallaix: Mech. Mater. 37 (2005) 1143–1152. doi:10.1016/j.mechmat.2004.12.001.

    Article  Google Scholar 

  27. A.S. Keh, Y. Nakada: Can. J. Phys. 45 (1967) 1101–1120. doi:10.1139/p67-081.

    Article  Google Scholar 

  28. D. Gloaguen, J. Fajoui, B. Girault: Acta Mater. 71 (2014) 136–144. doi:10.1016/j.actamat.2014.02.031.

    Article  Google Scholar 

  29. R. Dakhlaoui, V. Klosek, M.H. Mathon, B. Marini: Acta Mater. 58 (2010) 499–509. doi:10.1016/j.actamat.2009.09.028.

    Article  Google Scholar 

  30. R. Dakhlaoui, A. Baczmański, C. Braham, S. Wroński, K. Wierzbanowski, E.C. Oliver: Acta Mater. 54 (2006) 5027–5039. doi:10.1016/j.actamat.2006.06.035.

    Article  Google Scholar 

  31. J.R. Santisteban, M.R. Daymond, J.A. James, L. Edwards: J. Appl. Crystallogr. 39 (2006) 812–825. doi:10.1107/S0021889806042245.

    Article  Google Scholar 

  32. C.M. Moreton-Smith, S.D. Johnston, F.A. Akeroyd: J. Neutron Res. 4 (1996) 41–47. doi:10.1080/10238169608200066.

    Article  Google Scholar 

  33. W. Kockelmann, L.C. Chapon, and P.G. Radaelli: Neutron texture analysis on GEM at ISIS, in: Phys. B Condens. Matter, Elsevier, 2006: pp. 639–43. http://cat.inist.fr/?aModele=afficheN&cpsidt=18370454 (accessed September 3, 2014).

  34. X. Feaugas: Acta Mater. 47 (1999) 3617–3632. doi:10.1016/S1359-6454(99)00222-0.

    Article  Google Scholar 

  35. G. Vincze, E.F. Rauch, J.J. Gracio, F. Barlat, A.B. Lopes: Acta Mater. 53 (2005) 1005–1013. doi:10.1016/j.actamat.2004.10.046.

    Article  Google Scholar 

  36. K.E. Zur: Acta Metall., 1961, vol. 9, pp.155–61. http://www.refdoc.fr/Detailnotice?idarticle.

  37. C. Schmitt, P. Lipinski, M. Berveiller: Int. J. Plast. 13 (1997) 183–199. doi:10.1016/S0749-6419(95)00007-0.

    Article  Google Scholar 

  38. D. Gloaguen, M. François, R. Guillen: J. Appl. Crystallogr. 37 (2004) 934–940. doi:10.1107/S0021889804022034.

    Article  Google Scholar 

  39. J.D. Eshelby: Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 241 (1957) 376–396. doi:10.1098/rspa.1957.0133.

    Article  Google Scholar 

  40. M. Berveiller, A. Zaoui: J. Mech. Phys. Solids. 26 (1978) 325–344. doi:10.1016/0022-5096(78)90003-0.

    Article  Google Scholar 

  41. C. Beradai, M. Berveiller, P. Lipinski: Int. J. Plast. 3 (1987) 143–162. doi:10.1016/0749-6419(87)90004-0.

    Article  Google Scholar 

  42. E. Nes: Prog. Mater. Sci. 41 (1997) 129–193. doi:10.1016/S0079-6425(97)00032-7.

    Article  Google Scholar 

  43. U. Essmann, H. Mughrabi: Philos. Mag. A. 40 (1979) 731–756. doi:10.1080/01418617908234871.

    Article  Google Scholar 

  44. P. Franciosi: Acta Metall. 33 (1985) 1601–1612. doi:10.1016/0001-6160(85)90154-3.

    Article  Google Scholar 

  45. G. Franz, F. Abed-Meraim, J.-P. Lorrain, T. Ben Zineb, X. Lemoine, M. Berveiller: Int. J. Plast. 25 (2009) 205–238. doi:10.1016/j.ijplas.2008.02.006.

    Article  Google Scholar 

  46. J.-P. Lorrain, T. Ben-Zineb, F. Abed-Meraim, M. Berveiller: Int. J. Form. Process. 8 (2005) 135–158. doi:10.3166/ijfp.8.135-158.

    Article  Google Scholar 

  47. E.F. Rauch, J.J. Gracio, F. Barlat: Acta Mater. 55 (2007) 2939–2948. doi:10.1016/j.actamat.2007.01.003.

    Article  Google Scholar 

  48. K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat: Int. J. Plast. 46 (2013) 54–69. doi:10.1016/j.ijplas.2012.09.004.

    Article  Google Scholar 

  49. D. Gloaguen, M. Francois, R. Guillen, J. Royer: Acta Mater. 50 (2002) 871–880. http://cat.inist.fr/?aModele=afficheN&cpsidt=13481335 (accessed September 12, 2014).

  50. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, M.-J. Moya, T. Pirling: Metall. Mater. Trans. A. 46 (2015) 5038–5046. doi:10.1007/s11661-015-3073-3.

    Article  Google Scholar 

  51. L. Lutterotti, S. Matthies, and H.R. Wenk: in Proceeding Twelfth Int. Conf. Textures Mater. ICOTOM-12, NRC Press Ottawa, Canada, 1999, p. 1599.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Fajoui.

Additional information

Manuscript submitted July 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajoui, J., Gloaguen, D., Legrand, V. et al. Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach. Metall Mater Trans A 47, 2024–2036 (2016). https://doi.org/10.1007/s11661-016-3362-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3362-5

Keywords

Navigation