Skip to main content
Log in

Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current–Voltage and Capacitance–Voltage Measurements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rectifying junction properties of an Ag/n-InP Schottky diode are investigated in a wide temperature range from 10 K to 300 K (−263 °C to 27 °C). The electronic structure of the junction is analyzed by the techniques of current–voltage IV and capacitance–voltage CV measurement as a function of temperature. The electrical parameters are characterized with the standard thermionic emission theory. The main electrical characteristics including the values of apparent barrier height \( \phi_{\text{e}} \) and ideality factor n are found to be 0.414 eV and 1.008 at 300 K (27 °C), respectively, even though the value of barrier height \( \phi_{\text{b}} \) at 300 K (27 °C) from CV data is 0.417 eV. The \( \phi_{\text{e}} \), n, and Richardson plot demonstrate strong temperature dependency; that is, the \( \phi_{\text{e}} \) decreases, n increases, and the Richardson plot deviates with decreasing temperature. Such behaviors are attributed to Schottky barrier anomalies, which are explained by assuming the existence of a Gaussian distribution of nanometer-sized patches with low barrier height at the interface. The accurate theoretical models such as Tung’s lateral inhomogeneity and multi-Gaussian distribution to comment the barrier inhomogeneity on the electron transport across the interface are applied, and the comparisons between these approaches for the present experimental results are carried out. According to the multi-Gaussian distribution approach, the double-Gaussian nature of Ag/n-InP/In is commented by the values of the weighting coefficients, standard deviations, and mean barrier height calculated for each distribution. The total effective area of the patches \( NA_{\text{e}} \) is calculated for high and low temperatures, and as a result, it is found that the low barrier regions influence significantly the electron transport at the interface of the junction. The discrepancy between IV and CV barrier heights is discussed based on a Gaussian approach. From the linear relationship between \( \phi_{\text{e}} \) and n, the homogeneous barrier height \( \phi_{\text{b}} \) is noted to be 0.418 eV. The values of \( A^{*} \) (effective Richardson constant) and \( \phi_{\text{b}} \) are determined from classic modified Richardson plot as \( A^{*} \): 8.08 A cm−2 K−2 and \( \bar{\phi }_{\text{b}} \): 0.416 eV and from Tung’s model as \( A^{*} \): 9.35 A cm−2 K−2 and \( \mathop {\phi_{\text{b}} }\limits^{\_} \): 0.418 eV, which demonstrates an excellent agreement with the theoretical value (9.4 A cm−2 K−2) of n-InP. As a result, in order to obtain the more reliable values of \( A^{*} \) and \( \mathop {\phi_{\text{b}} }\limits^{\_} \), it could be reported that Tung’s lateral inhomogeneity approach is more meaningful; taking into account the effective patch area, which is significantly lower than the whole geometric area of the diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.H. Rhoderick and R.H. Williams: Metal-Semiconductor Contacts, 2nd ed., Clarendon Press, Oxford, U.K., 1988, p. 45.

    Google Scholar 

  2. F.A. Padovani and R. Stratton: Solid State Electron., 1966, vol. 9, pp. 695–707.

    Article  Google Scholar 

  3. V.L. Rideout and C.R. Crowell: Solid State Electron., 1970, vol. 13, pp. 993–1009.

    Article  Google Scholar 

  4. H.C. Card and E.H. Rhoderick: J. Phys. D: Appl. Phys., 1971, vol. 4, pp. 1589–1601.

    Article  Google Scholar 

  5. J.H. Werner, K. Ploog, and H.J. Queisser: Phys. Rev. Lett., 1986, vol. 57, pp. 1080.

    Article  Google Scholar 

  6. J.H. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, and M. Pinto: Phys. Rev. Lett., 1988, vol. 60, pp. 53.

    Article  Google Scholar 

  7. R.T. Tung: Phys. Rev. B, 1992, vol. 45, pp. 13509.

    Article  Google Scholar 

  8. J.H. Werner, and H.H. Güttler: J. Appl. Phys., 1991, vol. 69, pp. 1522–33.

    Article  Google Scholar 

  9. J. Yu-Long, R. Guo-Ping, L. Fang, Q. Xin-Ping, L. Bing-Zong, L. Wei, L. Ai-Zhen: Chin. Phys. Lett., 2002, vol. 19, pp. 553.

    Article  Google Scholar 

  10. M. Gülnahar and H. Efeoğlu: Solid State Electron., 2009, vol. 53, pp. 972–78.

    Article  Google Scholar 

  11. M. Gülnahar and H. Efeoğlu: J. Alloy. Compd., 2011, vol. 509, pp. 7317.

    Article  Google Scholar 

  12. M. Gülnahar: Superlatt. Microstruct., 2014, vol. 76, pp. 394–412.

    Article  Google Scholar 

  13. M. Gülnahar, T. Karacali, and H. Efeoğlu: Electrochim. Acta, 2015, vol. 168, pp. 41–9.

    Article  Google Scholar 

  14. J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham: J. Appl. Phys., 1991, vol. 70, pp. 7403.

    Article  Google Scholar 

  15. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon: Solid State Electron., 1986, vol. 29, pp. 633.

    Article  Google Scholar 

  16. R.L. Van Meirhaeghe, R. Van de Walle, W.H. Laflere, and F. Cardon: J. Appl. Phys., 1991, vol. 70, pp. 2200.

    Article  Google Scholar 

  17. W. Mönch: Semiconductor Surfaces and Interfaces, 2nd ed., Springer, Berlin, Germany, 1995, p. 35.

    Book  Google Scholar 

  18. C.W. Wilmsen: Physics and Chemistry of III-V Compound Semiconductor Interfaces, Plenum Press, New York, NY, 1985, p. 165.

    Book  Google Scholar 

  19. K. Hattori and Y. Torii: Solid State Electron., 1991, vol. 34, pp. 527-31.

    Article  Google Scholar 

  20. H. Hasegawa: Jpn. J. Appl. Phys., 1999, vol. 38, pp. 1098.

    Article  Google Scholar 

  21. M.-J. Jeng, H.-T. Wang, L.-B. Chang, Y.-C. Cheng, and S.-T. Chou: J. Appl. Phys., 1999, vol. 86, pp. 6261.

    Article  Google Scholar 

  22. ZJ. Horvath, V. Rakovics, B. Szentpali, and S. Püspöki: Phys. Stat. Solidi C, 2003, pp. 916–21.

  23. A. Ahaitouf, A. Bath, E. Losson, and E. Abarkan: Mater. Sci. Eng. B, 1998, vol. 52, pp. 208–15.

    Article  Google Scholar 

  24. ZsJ. Horvath, V. Rakovics, B. Szentpali, S. Püspöki, and K. Zdansky: Vacuum, 2003, vol. 71, pp. 113.

    Article  Google Scholar 

  25. H. Çetin and E. Ayyildiz: Semicond. Sci. Tech., 2005, vol. 20, pp. 625.

    Article  Google Scholar 

  26. F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt: Phys. B, 2009, vol. 404, pp. 1558–62.

    Article  Google Scholar 

  27. F.E. Cimilli, H. Efeoğlu, M. Sağlam, and A. Türüt: J. Mater. Sci.: Mater. Electron., 2009, vol. 20, pp. 105–12.

    Google Scholar 

  28. V. Janardhanam, A.A. Kumar, V.R. Reddy, and P.N. Reddy: J. Alloy. Compd., 2009, vol. 485, pp. 467.

    Article  Google Scholar 

  29. M. Soylu and B. Abay: Microelectron. Eng., 2009, vol. 86, pp. 88.

    Article  Google Scholar 

  30. V.R. Reddy: Thin Solid Films, 2014, vol. 556, pp. 300.

    Article  Google Scholar 

  31. H. Efeoğlu: Automation Program of Measure and Analyse for I-V and C-V, unpublished research, 2005.

  32. S.M. Sze: Physics of Semiconductor Devices, 2nd ed., John Wiley and Sons, New York, NY, 1981, p. 198.

    Google Scholar 

  33. S.K. Cheung and N.W. Cheung: Appl. Phys. Lett., 1986, vol. 49, pp. 85–87.

    Article  Google Scholar 

  34. F.E. Cimilli, H. Efeoğlu, M. Sağlam, and A. Türüt: J. Mater. Sci.: Mater. Electron., 2009, vol. 20, pp. 105-12.

    Google Scholar 

  35. S.J. Fonash: J. Appl. Phys., 1983, vol. 54, pp. 1966-75.

    Article  Google Scholar 

  36. N.F. Mott: Proc. R. Soc., 1939, vol. 171, pp. 27.

    Article  Google Scholar 

  37. M. Benamara, M. Anani, B. Akkal, and Z. Benamara: J. Alloy. Compd., 2014, vol. 603, pp. 197–201.

    Article  Google Scholar 

  38. F. La Via, F. Roccaforte, V. Raineri, M. Mauceri, A. Ruggiero, P. Musumeci, L. Calcagno, A. Castaldini, and A. Cavallini: Microelectron. Eng., 2003, vol. 70, pp. 519.

    Article  Google Scholar 

  39. M. Gülnahar: C-V-f Measurements of Ag/n-InP/In, unpublished research, 2014.

  40. L.F. Wagner, R.W. Young, and A. Sugarmen: IEEE Electron Device Lett., 1983, vol. 4, pp. 320–22.

    Article  Google Scholar 

  41. S.Ş. Tunalıoğlu: M. Sc. Thesis, January 2007, p. 8.

  42. P.K. Vasudev, B.L. Mattes, E. Pietras, and R.H. Bube: Solid State Electron., 1976, vol. 19, pp. 557–59.

    Article  Google Scholar 

  43. A.N. Donald: Semiconductor Physics and Devices, Irwin, Boston, MA, 1992, p. 134.

    Google Scholar 

  44. C.W. Wilmsen: Physics and Chemistry of III-V Compound Semiconductor Interface, Plenum, New York, 1985, p. 28.

    Book  Google Scholar 

  45. N. Newman, M.V. Schilfgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer: Phys. Rev. B, 1986, vol. 33, pp. 1146–59.

    Article  Google Scholar 

  46. R.F. Schmitsdrof, T.U. Kampen, and W. Mönch: J. Vac. Technol. B, 1997, vol. 15, pp. 1221–26.

    Article  Google Scholar 

  47. S. Duman, F.S. Özçelik, B. Gürbulak, M. Gülnahar, and A. Türüt: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 347.

    Article  Google Scholar 

  48. D. Korucu, A. Türüt, and H. Efeoğlu: Phys. B, 2013, vol. 414, pp. 35-41.

    Article  Google Scholar 

  49. C.H. Han and K. Kim: IEEE Electron Device Lett., 1991, vol. 20, pp. 74–76.

    Article  Google Scholar 

  50. R.D. Gould and T.S. Shafai: Thin Solid Films, 2000, vol. 373, pp. 89–93.

    Article  Google Scholar 

  51. V.R. Reddy: Thin Solid Films, 2014, vol. 556, pp. 300.

    Article  Google Scholar 

  52. A.C. Varghese and C.S. Menon: Eur. Phys. J. B, 2005, vol. 47, pp. 485.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Erzincan University Scientific Research’s Project (EUBAP) under the Grant of EUBAP:FEN-A-300614-0099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Gülnahar.

Additional information

Manuscript submitted December 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülnahar, M. Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current–Voltage and Capacitance–Voltage Measurements. Metall Mater Trans A 46, 3960–3971 (2015). https://doi.org/10.1007/s11661-015-3044-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3044-8

Keywords

Navigation